
Nonce Generators and the Nonce Reset Problem

Erik Zenner

Department of Mathematics
Technical University of Denmark

e.zenner@mat.dtu.dk

Abstract. A nonce is a cryptographic input value which must never
repeat within a given context. Nonces are important for the security of
many cryptographic building blocks, such as stream ciphers, block cipher
modes of operation, and message authentication codes. Nonetheless, the
correct generation of nonces is rarely discussed in the cryptographic lit-
erature.
In this paper, we collect a number of nonce generators and describe their
cryptographic properties. In particular, we derive upper bounds on the
nonce collision probabilities of nonces that involve a random component,
and lower bounds on the resulting nonce lengths.
We also discuss an important practical vulnerability of nonce-based sys-
tems, namely the nonce reset problem. While ensuring that nonces never
repeat is trivial in theory, practical systems can suffer from accidental
or even malicious resets which can wipe out the nonce generators cur-
rent state. After describing this problem, we compare the resistance of
the nonce generators described to nonce resets by again giving formal
bounds on collision probabilities and nonce lengths.
The main purpose of this paper is to provide a help for system designers
who have to choose a suitable nonce generator for their application. Thus,
we conclude by giving recommendations indicating the most suitable
nonce generators for certain applications.

Keywords: Cryptography, Security Engineering, Nonce, Nonce Reset, Nonce
Generator

1 Introduction

Nonces are cryptographic inputs with the property that each value only occurs
once within a given context1. Many modern cryptographic algorithms require
a key and a nonce as input, and as long as the key is unchanged, the nonce
must not repeat. Examples for cryptographic solutions that require nonces are
stream ciphers, certain block cipher modes of operation, some message authen-
tication codes (in particular Wegman-Carter based codes [2]), and certain entity
authentication solutions.
1 The term “nonce” is sometimes understood by cryptographers to be an abbreviation

for “number used once”. Even though this etymologically incorrect [1], it is a useful
mnemonic for cryptographic purposes.



One possibility of generating nonces is the use of a random number gen-
erator (RNG). However, in order to avoid collisions, the nonce length has to
be large, which may be problematic particularly in light-weight cryptographic
systems with limited memory or bandwidth. In addition, a cryptographically
strong RNG is not always available. Thus, a popular solution is to use a de-
terministic, stateful generator that keeps track of the nonces already used. The
most obvious candidate for such a generator is a simple counter. As long as the
generator does not “wrap around” (i.e. reaches a value that is longer than the
nonce length, forcing it to start from 0 again), such a generator is good enough
for most practical purposes.

However, this is only the case as long as the generator actually maintains its
inner state. While this seems trivial in theory, it can not be taken for granted in
practice. An unexpected power-down can mean the loss of all information that
was not stored in non-volatile memory, and for many applications, constantly
storing the nonce to Flash memory or a hard disk is not an option. For such
systems, solutions are required that guarantee the nonce property also after a
system reset.

Prior Art: Even though nonces play a prominent role in cryptography, hardly
any literature exists on the issue. An overview of some known nonce techniques
can be found in a discussion threat in the CFRG mailing list from early 2007 [3].
The use of nonces in security proofs was modeled by Rowaway [4]. In addition, a
number of practical cryptosystems have been broken due to errors in the nonce
handling [5–8].

Contribution: While the nonce generators described in this paper have been
used in practice, our main contribution is the derivation of concrete bounds for
collision probability and the nonce length. To the best of our knowledge, this is
the first time that a full formal treatment of popular nonce generator techniques
is given. We also give the first scientific discussion of the nonce reset problem
and analysis of the techniques used to address it. Using the results of this paper,
system designers can compare the suitability of the different nonce generators
for their target application and make choices based on mathematical bounds.

Paper Structure: In Section 2, we review a number of nonce generators, most
of which are well-known in the literature. We derive formal upper bounds on
the nonce collison probabilities and lower bounds on the nonce lengths. Then
we proceed to describe the nonce reset problem in Section 3. Here we also in-
troduce a number of solutions to the problem, again giving formal bounds on
collision probability and nonce length. Finally, in Section 4, we compare the
nonce generators proposed and conclude the paper.

Notation: Throughout this paper, we will use the following variables. The maxi-
mum number of nonces produced by a generator is denoted by θ. The maximum
number of nonce resets is denoted by r − 1, i.e. r is the maximum number of
(re-)initialisations. The collision probability is denoted by pc, and the maximum



allowable collision probability is denoted by pmax. Finally, the nonce length is
denoted by l. If a nonce consists of a counter and a random part, then the lengths
of these parts are denoted by l1 and l2, respectively.

In the algorithmic descriptions of Section 3, a ← b denotes the assignment
of value b to variable a, while a = b denotes the logical comparison between a
and b.

2 Standard Nonce Generators

Before discussing the nonce reset problem, we briefly review three basic types of
nonce generators (NGs) and give bounds for the corresponding collision proba-
bilities and nonce lengths.

Choosing the Right Nonce Length: It is important upon designing a nonce-based
system to pick the right nonce length l. An upper bound for l often results
from application limititations such as expensive bandwidth or storage. While it
may be possible to choose any desired nonce length on e.g. a desktop or laptop
computer, limitations may exist for resource-restricted devices. In light-weight
systems such as smart cards, sensor nodes, RFID chips etc., non-volatile memory
as well as transmission bandwidth is limited and expensive. Thus, a solution that
simply chooses a large nonce to elimiate all potential problems is not an option
in such a scenario – the nonce length has to be optimised as far as possible.

To this end, a lower bound for l is required. As it turns out, this lower bound
depends on the type of NG used, as well as the maximum number θ of nonces
required within one context. In Section 3, we will see that additional factors play
a role if we also want the NG to address the reset problem.

Deterministic vs. Probabilistic NGs: Nonce generators can be either determin-
istic or probabilistic.

– Deterministic NGs use some kind of inner state to keep track of the values
already used as nonces, ensuring that the same value never gets used again.
Such generators have two functions: Init() is executed upon setting up the
NG, while Next() outputs the next nonce value and updates the inner state.

– Probabilistic NGs use some kind of external randomness source to generate
nonces. While all of them have a Next() function, some of them are stateless
and do thus not require an Init() function. We denote them as “probabilis-
tic” NGs because the sequences produced by them can in theory contain
collisions. In practice, however, the collison probability pc can be kept ar-
bitrarily small by making the nonce length l large. Note that probabilistic
NGs require a good RNG to function properly. Implementing a good RNG,
however, is one of the hardest tasks in practical cryptography (see, e.g., [9]),
and if the RNG is faulty, the true collision probability may be much higher
than expected.



Additional Constraints: In some protocols in the literature, the NG is expected
to have additional properties, such as unpredictability or pseudo-randomness.
However, in this paper, we follow the cryptographically more rigorous view pre-
sented by Rogaway [4], namely that the role of a NG should be limited to guar-
anteeing collision-freeness. If additional properties are required, they have to be
made explicit (“The protocol requires an pseudo-random nonce”) and should
be provided by the appropriate cryptographic primitives (e.g. a pseudo-random
function) in a separate step. Thus, no such additional constraints are considered
here.

2.1 Counter-based Generator

The most widespread deterministic generator is a simple counter. The Init()
function consists of setting the counter cnt to 0 or to a random value, and the
Next() function outputs cnt and increases it by 1 (modulo 2l)2.

Note that this type of generator is well-known and well-understood; we only
repeat some known facts for completeness sake.

Nonce length: As long as the number θ of nonces drawn is at most 2l, the output
of a counter-based generator is guaranteed to be collision-free. This yields the
trivial condition on the nonce length that l ≥ log2(θ).

2.2 RNG-based Generator

The most common probabilistic NG simply outputs an l-bit random number rnd
every time a nonce is requested. This NG does not maintain an inner state and
thus, does not need an Init() function. As with the counter-based generator,
the RNG-based generator is well-known and well-understood in the literature.
Note that if a pseudo-RNG is used instead (as is often the case in practice), it
should be a cryptographically secure one as formalised e.g. in [9]. If this security
advice is heeded, it should not be possible to distinguish between the pseudo-
RNG and a real RNG. Thus, in the following, the following facts for a real RNG
can be applied to a cryptographically sound pseudo-RNG just as well.

Nonce length: The birthday bound (see e.g. [12, Section 6.6]) states that if θ out
of 2l elements are drawn in a mutually independent way, the collision probability
pc is upper bounded by θ2−θ

2·2l .

2 Another wide-spread type of deterministic NG is the use of the system clock [10,
11]. If there is at least one clock tick between two accesses to the Next() function,
and if the clock is never reset or wrapped around, then this can be seen as a special
case of a counter, where not every available nonce is actually used. However, there
are additional problems, such as synchronisation problems or the possibility that
someone (even inadvertedly) resets the system clock, thus creating a nonce re-use
that goes unnoticed by the application.



This formula can be used to calculate the minimum length of a nonce. If pmax

denotes the highest acceptable collision probability, we have:

θ2 − θ
2 · 2l

≤ pmax ⇔ 2l ≥ θ2 − θ
2 · pmax

Example: If we need at most θ = 220 nonces and a collision probability of at
most pmax = 2−20, then we get 2l ≥ 259, meaning that the nonce has to have a
minimum length of 59 bit. Thus, compared to the counter solution, the nonce
has to be almost three times as long3.

2.3 Mixed Solution

Another possibility is to combine the two approaches above by concatenating an
l1-bit counter cnt and an l2-bit random number rnd into one nonce of length
l = l1 + l2. For every call to the Next() function, cnt will be increased by
one, and a new random number rnd will be generated. Obviously, this has the
disadvantages of the RNG-based solution, namely that an RNG is required and
that there is a risk for collisions. However, the collision probability and thus
the nonce length is reduced by the counter part, and the solution offers some
advantages in the case of nonce resets (see Section 3).

While the mixed solution is used in practice, we are not aware of a thorough
discussion in the cryptographic literature. Thus, we give a more detailed analysis
of its properties in the rest of this section.

Nonce length: As for the RNG-based generator, the nonce length depends on
the collision probability. Thus, we start by giving a general collision bound for
the mixed solution.

Lemma 1. Assume that the number 2l1 of possible counter values divides the
maximum number θ of required nonces. Then the collision probability for the
mixed solution is 0 if 0 ≤ θ ≤ 2l1 , and

pc ≤
θ2 − θ · 2l1

2 · 2l

otherwise.

Proof. Let us simplify notation by writing S = 2l, S1 = 2l1 , and S2 = 2l2 . Note
that for θ ≤ 2l1 , no collision can occur, since we are guaranteed to use a new
counter cnt each time. Beyond that point, a collision can occur if for two nonces
with the same counter cnt, the random part rnd also collides. If a total of θ
nonces is output by this NG, then for each value of cnt, we have θ

S1
calls to

3 In many cryptographic texts, the simplified rule 2l ≈ θ2 is used, meaning that nonces
are chosen to be exactly twice as long as in the counter case. This, however, ignores
the influence of the acceptable collision probability pmax.



the RNG, generating an l2-bit random part. Thus, for each counter, the collision
probability p′c is bounded by the birthday bound as

p′c ≤

(
θ
S1

)2

−
(
θ
S1

)
2 · S2

=
θ2 − θS1

2 · S2
1 · S2

.

In total, a collision occurs if there is a collision for any of the S1 counters, i.e. the
total collision probability is bounded by

pc ≤ S1 · p′c = S1 ·
(
θ2 − θS1

2 · S2
1 · S2

)
=

θ2 − θS1

2 · S1 · S2
=
θ2 − θS1

2S
.

Resubstituting S1 and S, we obtain the desired bound. ut

Corollary 1. Assume that the number 2l1 of possible counter values divides
the maximum number θ of required nonces. If the maximum acceptable collision
probability is pmax, then the nonce length for the mixed solution has to be at least

l ≥ log2

(
θ2 − θ · 2l1

2 · pmax

)
.

A Cautionary Note: Note that the above estimate is only correct if S1 divides θ.
In situations where this is not the case and where θ is small compared to S1, the
bound on pc may be too low. Figure 1 illustrates this problem for three sample
setups, namely for l1 = 6, 10, 11 (from left to right) and a total nonce length
of l = 20. The correct value for pc is shown with a solid line, while the above
bound is shown with a dashed line4. As can be seen, the error gets larger with
increasing l1. In fact, the error is bounded by S1

8S2
, i.e. it is rather insignificant

for small values of l1 but must not be ignored for large l1. This result is proven
in Appendix A.

A simple way of solving this problem when designing a system is to choose
S1 and θ such that S1 divides θ. If S1 is small compared to θ, this should not be
a problem. If, on the other hand, S1 is close to θ, it is probably worth increasing
l1 by a few bits such that S1 ≥ θ, thus achieving a collision probability of 0.

3 The Nonce Reset Problem

In actual implementations, the inner state of a deterministic NG has to be stored
between two calls to the Next() function. Basically, there are two possibilities:

– Volatile memory (VM): This type of memory requires power to maintain
its state. Examples are various types of RAM, but also CPU registers. The
problem with using this kind of memory is that the NG state will be lost
when the system suffers a (planned or accidential) power-down.

4 Note that the “break” in the curve for l1 = 10 is not a plotting error, but a property
of the probability function, which is always convex with the exception of the points
where S1 divides θ.



q
0 1,000 2,000 3,000 4,000

p
c

0

0.2

0.4

0.6

0.8

1.0

Fig. 1. Mixed Solution: Collision probabilities for l = 20 and l1 ∈ {6, 10, 11}.

– Non-volatile memory (NVM): This type of memory maintains its state
even if not powered. There are two types of solutions:
• Electronically addressed: This includes technologies like EEPROM

or Flash. They are rather expensive and slow compared to VM. As a
result, on most platforms, designers will try to use as little electronically
addressed NVM as possible.

• Mechanically addressed: This includes typical “secondary” storage
like magnetical or optical storage media (e.g. hard disks or DVDs). They
have the disadvantage of being very slow compared to VM.

Long-term cryptographic keys are typically stored in NVM, and while they
are in use, they are also loaded into VM. This way, they can be accessed fast
and will nonetheless survive a system crash. For NGs, however, this solution is
not always feasible. Electronically addressed NVM is often not available, and
mechanically addressed NVM would slow down the system performance consid-
erably due to the frequent changes of the NG state. Thus, practical solutions
often store the NG state in volatile memory only. If, however, the key survives a
system crash while the NG state does not, then some way of re-setting the NG
is required.

It turns out that this reset function is often forgotten by NG designers. The
classical mistake is to re-use the old key, but to start a new instance of the NG
[5]. This means that the Init() function is called for the second time, which
leads to a nonce re-use for deterministic NGs.

If the solution is built such that the cryptographic key survives a system
crash, then the NG should have a Reset() function, which may or may not be
identical to the Init() function. If Reset() and Init() are different, then it is
important to always remember the following master rule for nonce initialisation
upon system start-up: If no key exists, run Init(). If a key exists, run Reset().



s-2
0 1 2

S
eq

u
en

ce
1

Seq
uen

ce
2

Overlap

S
eq

u
en

ce
1

Sequence 2

s-1
s-2

0 1 2

s-1

Fig. 2. The cycle of counter values

In the following, we will discuss a number of proposals for how to add a
Reset() function to a counter-based NG. In addition, note that the simple RNG-
based NG also solves the reset problem, albeit not in an optimal way.

3.1 Randomised Reset

A wide-spread solution is to reset the counter to a random l-bit value. Note that
this solution requires an RNG, which has the disadvantages already discussed.

In addition, the solution is no longer deterministic and opens up for the
possibility of nonce collisions. Note that since the Next() function computes
the new counter as i ← i + 1 mod 2l, counters will ”wrap“ if they get larger
than 2l − 1. Thus, we can imagine the set of counters to be a cycle of length 2l.
Each sequence of counters between two resets marks a segment on this cycle, as
illustrated in Figure 2. A collision between two sequences of counters occurs if
those segments overlap, also shown in Figure 2.

Nonce length: A first intuition is that choosing the same nonce length as for
an RNG-based NG would be save. But in this case, our new solution would not
offer any advantages compared to an RNG-based NG. Thus, we are interested
in showing that the required nonce length can be made smaller, as follows.

Lemma 2. After r − 1 resets, the probability for at least one collision in a
randomised reset solution is at most r−1

2l

(
θ − r

2

)
.

Proof. We number the nonce sequences by 1, 2, . . . , r and denote their respective
lengths by s1, s2, . . . , sr. Before the first reset, there is only sequence 1, i.e. there
can not be any collisions unless s1 ≥ 2l.

Now consider the drawing of the starting point for sequence 2. Obviously,
it must not collide with any of the s1 points on sequence 1. In addition, it
must not coincide with any of the s2 − 1 points before sequence 1 either, since



x-s +1i x x+s -1j

Sequence 1(length s ):j

Sequence 2 (length s ):i

x+s -2ji+s

If sequence 1 starts with nonce x, then sequence 2 will overlap if its starting nonce
lies between x− si + 1 and x+ sj − 1 (both inclusive).

Fig. 3. Overlapping sequences

otherwise, the sequences will overlap (see Figure 3). Thus, a collision occurs with
a probability of 1

2l (s1 + s2 − 1).
For sequence 3, we already have to take the sequences 1 and 2 into account,

and so on. In general, the probability pi (i ≥ 2) for a new sequence to overlap
with an already existing one is upper bounded as follows:

pi ≤ 1
2l
·
i−1∑
j=1

(sj + si − 1).

The overall probability that at least one collision has occured after r se-
quences (i.e., r − 1 resets) is then upper bounded by

pc ≤
r∑
i=2

pi ≤ 1
2l
·
r∑
i=2

i−1∑
j=1

(sj + si − 1)

=
1
2l
·

(
(r − 1)

r∑
i=1

si −
r−1∑
i=1

i

)

=
1
2l
·
(

(r − 1) · θ − r · (r − 1)
2

)
=

r − 1
2l
·
(
θ − r

2

)
ut

Note that this can be considered as a generalisation of the bound for purely
random nonces. Purely random nonces correspond to random reset system with
one reset after each output nonce, meaning r = θ. In this case, the above collision
bound becomes θ−1

2l ·
(
θ − θ

2

)
. This is the same as θ2−θ

2·2l , which is the bound we
already knew for purely random nonces.



Corollary 2. Assume that a counter-based NG with randomised reset suffers
at most r − 1 resets during the lifetime of one key. If the maximum acceptable
collision probability is pmax, then we need

l ≥ log2

(
r − 1
pmax

·
(
θ − r

2

))
.

Example: Consider the case of a resource-restricted device5 with a built-in key
and a maximum lifetime of 5 years (227.23 seconds). After each power-down, the
device needs 30 seconds (24.91) to re-boot, which limits the number of possible
resets to r = 222.32. On the other hand, if the system is running, it can send
(due to bandwidth restrictions) at most 100 nonces (26.64) per second, i.e. up to
θ = 233.87 nonces in its lifetime. Thus, a naive application of the above corollary
yields a minimum nonce length of 56.19− log2(pmax) bit.

However, this approach overestimates the required nonce length. The reason
is that the system can not be busy re-booting all the time while at the same
time producing nonces all the time. In fact, the number r − 1 of calls to the
Reset() function and the number θ of calls to the Next() function depend on
each other. An analysis of the function f(r) = log2( r

pmax
·
(
θ − r

2

)
) where θ is

written as a function of r shows that the function is constantly increasing in
the interval [1, θ]. Accordingly, the maximum is reached for r = θ. Since r has
a known upper bound, we have θ = r = 222.32, proving that a minimum nonce
length of 43.64− log2(pmax) bit is in fact sufficient.

3.2 Mixed Solution 1

The mixed solution described in Section 2.3 can also be used to solve the nonce
reset problem. Again, an RNG is required, which may induce new problems into
the solution.

Nonce Length: A general bound for the collision probability of this mixed solu-
tion can be given as follows.

Lemma 3. After r − 1 resets, the probability for at least one collision in the
mixed solution from section 2.3 is bounded by

pc ≤
θ · (θ + 2l1(r − 1))

2 · 2l
.

Proof. We write again S1 = 2l1 , S2 = 2l2 and S = 2l. We start our analysis
by observing that the worst case occurs if for each of (r − 1) resets, the same
value is assigned to the counter part (as is the case in a counter solution without
randomised reset). In this case, we have r sequences, each of which has a length of
θ
r nonces. Thus, for no value of cnt we can have more than θ

S1·r + 1 assignments

5 The example is taken from a real-world solution for intelligent homes.



to rnd between two resets, and the total number a of rnd values for each cnt is
bounded by

a ≤ r ·
(

θ

S1 · r
+ 1
)
≤ θ

S1
+ r.

For each value of cnt, this means that the collision probability is upper bounded
using the birthday bound by

p′c[j] ≤
a2
j − aj
2S2

.

Consequently, the total collision probability for all S1 values of cnt is bounded
by

pc ≤
S1∑
j=1

a2
j − aj
2S2

=
1

2S2

 S1∑
j=1

a2
j −

S1∑
j=1

aj

 .

The sum
∑S1
j=1 a

2
j with a term sum of θ and terms in an interval [0, . . . , θS1

+ r]

can be shown to be upper bounded by θ ·
(
θ
S1

+ r
)

. In addition, it holds that∑S1
j=1 aj = θ. Thus, the bound can be computed to be

pc ≤
1

2S2

(
θ ·
(
θ

S1
+ r

)
+ θ

)
=

θ · (θ + S1(r − 1))
2S

.

By resubstituting S1 and S, we obtain the desired result. ut

Note that this bound is a special case of the bound for the mixed solution without
nonce reset, since for r = 0, we obtain pc ≤ θ·(θ−2l1 )

2·2l = θ2−θ2l1

2·2l , which is exactly
the bound for the mixed solution from Section 2.3.

Corollary 3. If the maximum acceptable collision probability is pmax, then the
minimum nonce length for the mixed solution from section 2.3 is

l ≥ log2

(
θ · (θ + 2l1(r − 1))

2 · pmax

)
.

3.3 Mixed Solution 2

An alternative is to modify the mixed solution described in Section 2.3 as follows:
For every call to the Next() function, only the cnt part is updated. On the other
hand, for every call to the Init() or Reset() function, the cnt part is set to
0, and the rnd part is set to a random value which is preserved until the next
reset.



function Init() function Reset() function Next()

1. i← 0 1. retrieve p from NVM 1. if i = p
2. p← u 2. i← p 2. p← p+ u
3. store p in NVM 3. p← p+ u 3. store p in NVM

4. store p in NVM 4. output i
5. i← i+ 1

Fig. 4. Counter-based NG using reset points

Nonce Length: This solution can be made very resistant against nonce resets by
choosing the parameters as follows:

– If 2l1 ≥ θ, the construction is completely resistant against collisions as long
as no nonce resets occur.

– If 2l2 ≥ r2−r
2·pmax

, the probability for a collision in case of a reset will be less
than pmax.

Thus, the recommended nonce length for this solution is l ≥ log2

(
θ · r

2−r
2·pmax

)
for

r > 1. Note that if the maximum number r − 1 of expected resets is small com-
pared to the total number of nonces, this solution is superior to mixed solution
1.

3.4 Reset Points

A completely different solution is to use reset points. This means that instead
of using random start values after a reset, deterministic values are used in such
a way that collision-freeness can be guaranteed. This is achieved by occasionally
storing a safe reset point to non-volatile memory6. If this is done only rarely, the
slow hardware access has little impact on the overall system performance.

To this end, we choose an interval size u which defines the distance between
two reset points. If no reset occurs after u calls to the Next() function, a new
reset point is stored. If, on the other hand, a reset occurs, the counter is set to
the last stored reset point. Figure 4 describes this solution.

Nonce length: Note that the last nonce value ever to be produced by the system
reaches its maximum if for each of the r− 1 calls to the function Reset(), a full
u nonce values go unused. This means that even the largest nonce will be less
than θ+(r−1)·u, and that the nonce length has to be at least log2(θ+(r−1)·u).

Note that this is a generalisation of the nonce length given for simple counter-
based NGs. If the system suffers no resets, then r−1 = 0, and the above formula
yields the well-known nonce length of log2(θ).

6 This technique is mentioned in passing by Bernstein in [13], where he writes: “Store
a safe nonce value – a new nonce larger than any nonce used – on disk alongside the
key.”



4 Comparison and Conclusions

4.1 Comparison

Table 1 compares the collision bounds for the solutions described above. All
probabilities are given under the assumption that the actual number of nonces
produced and actual number of nonce resets occuring do not exceed the antici-
pated values θ and r− 1, respectively. The table also indicates whether an RNG
is required. Remember that if this is the case, there is a probability (albeit low
when choosing the right parameters) of producing a nonce collision. For these
cases, the table indicates whether one collision significantly increases the risk of
getting a whole sequence of collisions.

coll. prob. coll. prob. RNG colliding
without reset with reset required? sequences

Counter w. rand. reset pc = 0 pc ≤ r−1
2l

(
θ − r

2

)
yes yes

RNG-based nonce pc ≤ θ2−θ
2·2l pc ≤ θ2−θ

2·2l yes no

Mixed solution 1 pc ≤ θ2−θ·2l1

2·2l pc ≤ θ·(θ+2l1 (r−1))

2·2l yes no

Mixed solution 2 pc = 0 pc ≤ r2−r
2·2l yes yes

Couter w. reset points pc = 0 pc = 0 no n.a.

Table 1. Comparison of nonce generators

If no nonce resets are to be expected, the simple counter-based NG (not
contained in the table) is the optimal strategy, yielding a minimum nonce length
and a collision probability of zero.

If, however, nonce resets can happen, then the choice of the optimal NG
and its parameters depends on the application situation. However, it seems that
for many applications, the use of nonce reset points offers an optimal strategy.
If storing a reset point at regular intervals is an option, this solution gives a
guarantee for collision-freeness while having the shortest nonce length (log2(θ+
(r − 1) · u) bit) of all solutions discussed. In addition, it does not require a
random-number generator, thus removing an often vulnerable component from
the solution.

Where regular storing of reset points is not an option, the mixed solution
2 will often give good results. Note that for most systems, a nonce reset is a
rare event, and for small values of r, mixed solution 2 provides a low collision
probability and a low nonce length.

4.2 Conclusions

In this paper, we have collected and described a number of nonce generators
that are used in practice. For all of these generators, we have derived formal



bounds on the collision probabilities and nonce lengths. In addition, we have
described the nonce reset problem, given a theoretical analysis of suitable nonce
generators and discussed their resistance against nonce resets. To the best of
our knowledge, this is the first time that a full formal treatment of popular
nonce generator techniques is given. In particular, we hope to have given system
designers a toolbox for choosing the right nonce generator and parameters for
their target application.

Acknowledgements

The author wishes to thank G. Leander and L.R. Knudsen for inspiring dis-
cussions, D. Wagner for helpful comments on an early draft of this paper, and
several anonymous reviewers for proposed improvements.

References

1. Wiktionary: Nonce.
http://en.wiktionary.org/wiki/nonce (2009)

2. Wegmann, M., Carter, J.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22 (1981) 265–279

3. List, C.M.: Consequences of nonce reuse.
http://www1.ietf.org/mail-archive/web/cfrg/ (2007)

4. Rogaway, P.: Nonce-based symmetric encryption. In Roy, B., Meier, W., eds.:
Proc. FSE 2004. Volume 3017 of LNCS., Springer (2004) 348–359

5. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: The
insecurity of 802.11. In: Proc. 7th International Conference on Mobile Computing
and Networking, ACM (2001) 180–189

6. Kohno, T.: Attacking and repairing the WinZip encryption scheme. In: Proc. 11th
ACM Conference on Computer and Communications Security (CCS ’04), ACM
Press (2004) 72–81

7. Sabin, T.: Vulnerability in Windows NT’s SYSKEY encryption. (BindView Secu-
rity Advisory, December 16, 1999, available from
http://marc.info/?l=bugtraq&m=94537756429898&w=2)

8. Wu, H.: The misuse of RC4 in Microsoft Word and Excel.
http://eprint.iacr.org/2005/007 (2005)

9. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to /dev/random. In: Proc. 12th ACM Conference on Computer
and Communications Security (CCS ’05), ACM Press (2005) 203–212

10. Gong, L.: A security risk of depending on synchronized clocks. ACM operating
systems review 26 (1992) 49–53

11. Neuman, B., Stubblebine, S.: A note on the use of timestamps as nonces. Operating
Systems Review 27 (1993) 10–14

12. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press (2005)

13. Bernstein, D.: The Poly1305-AES message-authentication code. In Gilbert, H.,
Handschuh, H., eds.: Proc. Fast Software Encryption ’05. Volume 3557 of LNCS.,
Springer (2005) 32–49 also available from http://cr.yp.to/mac.html#papers.



A Detailed Analysis of the Mixed Solution

In Section 2.3, the collision probability for the mixed solution was upper bounded
by θ2−θ·S1

2S . However, this bound only holds if S1 divides θ; otherwise, the bound
is too low. In the following, we derive a universal bound.

Theorem 1. The collision probability for the mixed solution in Section 2.3 is
upper bounded by θ2−θ·S1

2S + S1
8S2

.

Proof. Let us start by introducing the following notation. We write θ = q ·S1 +r,
where q and r are the unique quotient and remainder, resp., when dividing θ by
S1.

The exact collision probability for the mixed solution can be modelled as
follows. Imagine that there are S1 = 2l1 containers and S2 = 2l2 balls. With
each call i to the NG, one ball is drawn at random (with replacement) and
thrown into i-th container. This means that after θ iterations, all S1 containers
contain q balls, and r containers contain one additional ball. Thus, the total
exact collision probability can be described by the following formula:

pc = 1−

(
q−1∏
i=1

(
1− i

S2

))S1

·
(

1− q

S2

)r
.

By using the approximation that 1 −
∏

(1 − pi) ≤
∑
pi for 0 < pi ≤ 1, we can

upper bound this probability as follows:

pc ≤ S1 ·
q−1∑
i=1

i

S2
+ r ·

(
q

S2

)
= S1 ·

q · (q − 1)
2 · S2

+
rq

S2
.

Substituting S2 by S/S1, we obtain:

pc ≤ S2
1 ·

q · (q − 1)
2 · S

+
rqS1

S
=

S2
1(q2 − q) + 2rqS1

2S
.

This bound is a correct bound in the sense that it is always larger than the
correct probability function. Now let us consider the estimate given in Section
2.3:

θ2 − θ · S1

2S
=

(q · S1 + r)2 − (q · S1 + r) · S1

2S

=
S2

1(q2 − q) + 2rqS1 + (r2 − S1r)
2S

.

As we can see, this bound differs from the above by the term r2−S1r
2S . Since

r ≤ S1 by definition of r, this term is always < 0 with the exception of r = 0, in
which case both functions are identical. Figure 5 illustrates this by showing the
correct probability (dotted), the simplified bound (solid), and the correct bound
(dashed).



q
600 800 1,000 1,200 1,400 1,600

p
c

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. Comparing correct and simplified bound for mixed solution (l = 20, l1 = 9)

Analysis of the error function r2−S1r
2S shows that it achieves its maximum for

r = S1
2 , yielding a maximum error of − S1

8S2
. By adding this maximum error to

the simplified bound, we obtain a bound that is always correct and prove the
theorem. ut


