
Cache Timing Analysis of LFSR-based Stream
Ciphers

Gregor Leander1, Erik Zenner1, and Philip Hawkes2

1 Technical University of Denmark
Department of Mathematics

{g.leander,e.zenner}@mat.dtu.dk
2 Qualcomm Incorporated
phawkes@qualcomm.com

Abstract. Cache timing attacks are a class of side-channel attacks that
is applicable against certain software implementations. They have gen-
erated significant interest when demonstrated against the Advanced En-
cryption Standard (AES), but have more recently also been applied
against other cryptographic primitives.

In this paper, we give a cache timing cryptanalysis of stream ciphers
using word-based linear feedback shift registers (LFSRs), such as Snow,
Sober, Turing, or Sosemanuk. Fast implementations of such ciphers use
tables that can be the target for a cache timing attack. Assuming that a
small number of noise-free cache timing measurements are possible, we
describe a general framework showing how the LFSR state for any such
cipher can be recovered using very little computational effort. For the
ciphers mentioned above, we show how this knowledge can be turned
into efficient cache-timing attacks against the full ciphers.

1 Introduction

Cache Timing Attacks [24, 19, 23] are a class of side-channel attacks. They
assume that the adversary can use timing measurements to learn some-
thing about the cache accesses of a legitimate party, which turns out to
be the case in some practical applications. In 2005, Bernstein [2] and Os-
vik, Shamir, and Tromer [17, 18] showed in independent work that the
Advanced Encryption Standard (AES) is particularly vulnerable to this
type of side-channel attack, generating a lot of attention for the field. Sub-
sequent work dealt with verifying the findings [16, 15, 14, 22, 7], improving
the attack [20, 3, 13, 5], and devising and analyzing countermeasures [6, 4,
25].

However, the cryptanalytic attention was mainly focussed on AES,
while other ciphers were treated only handwavingly. For example, the eS-
tream report on side-channel attacks [10] simply categorizes all stream



ciphers that use tables in their implementations as vulnerable, indepen-
dent of whether or not a cache timing attack was actually feasible. The
cache timing analysis of the HC-256 stream cipher [26] presented at SAC
2008 was the first paper to actually analyze the cache timing resistance
of a stream cipher. It also provided a model for the design and analysis
of stream ciphers with regards to cache timing attacks.

In this paper, we discuss a different class of stream ciphers, namely
those using tables to speed up software implementations of word-based
linear feedback shift registers (LFSRs). The technique was introduced
around the year 2000 and is used by ciphers such as Snow [8, 9], Sober-
128 [11], Turing [21], or Sosemanuk [1].

1.1 Organisation of the Paper

The paper is organized as follows. In Section 2, we review the cache tim-
ing model that is used for the analysis and discuss its goal and practical
relevance. Section 3 gives the general framework for the attack and de-
scribes its applicability to a wide range of stream cipher, including but
not limited to the concrete examples being discussed in Section 4. Finally,
in Section 5, we summarize our findings.

1.2 Notation

All ciphers discussed below are word-based, where one word consists of
32 bits. On a 32-bit value, we denote by ⊕ the bitwise addition in F232 ,
by � the addition modulo 232. The notations � n and � n define left
and right shifts by n bits (modulo 232), and ≪ n the left rotation by n
bits. For any vector x = (x0, . . . , xn−1) in Fn2 and integers 0 ≤ a < b < n
we denote by x(a,...,b) the vector (xa, . . . , xb).

2 Cache Timing Model

As with all side-channel attacks, cache timing attacks are not inherently
attacks against the algorithm, but against its implementation3. Thus,
there are basically two ways of analyzing the cache timing resistance
of a cipher. One can either consider a concrete implementation of the
cipher, or do a general analysis in the framework of a model that gives
the adversary certain rights, which can be modeled as oracle accesses. In
3 For readers not familiar with cache timing attacks, Appendix A gives a short intro-

duction.



the latter case, a “break” within the model does not necessarily imply a
break of all practical implementations, but it can indicate that extra care
has to be taken when implementing the cipher.

The model that we want to use for our analysis is the one proposed
in [26]. It models a synchronous cache attacker, i.e. an adversary who can
only access (and thus perform measurements on) the cache after certain
elementary operations by the legitimate users have finished. In particular,
a synchronous cache adversary can do cache measurements before and
after a full update of the stream cipher’s inner state, but not while the
update is in progress.

Formally, the adversary uses two oracles:

– Keystream(i): He requests the cipher to return the i-th keystream
block to him.

– SCA Keystream(i): He obtains a noise-free list of all cache accesses
made by Keystream(i), but does not learn anything about their
order. These cache accesses give him information about the actual
table entries as described in the paragraph on “Handling Cache Line
Sizes” below.

Model vs. Real World: Note that the Keystream(i) oracle is considered
“standard” for stream cipher analysis, i.e. it is also available to an adver-
sary in a non-side-channel setting. The SCA Keystream(i) oracle, on
the other hand, gives the adversary more information than will typically
be available in a real-world side-channel setting, since it assumes that his
measurements are undisturbed by noise. Thus, the results obtained in this
paper are for an idealized cache measurement setting. Whether attacks
under this model also constitute attacks in the real world depends on the
implementation details and has to be verified on a case-by-case basis.

In the real world, the adversary usually needs the ability to repeat his
measurements several times in order to remove the noise from the list of
cache accesses. This corresponds to running the stream cipher under the
same key and initialization vector (IV) for a given number of times, each
time measuring the cache lines accessed and intersecting the resulting
tables. Note that while encrypting different plaintexts under the same
IV should not be possible for most implementations, one can imagine
applications where the adversary can ask the system to decrypt the same
ciphertext several times under the same IV, thus forcing the stream cipher
to execute an identical sequence of operations.

Also note that there may be “wrong” cache accesses that occur very
frequently, i.e. that do not disappear when repeating the measurement



and intersecting several cache access lists. These accesses may originate
with external processes such as applications or the operating system. In
some cases, it may be possible to identify these wrong accesses by repeat-
edly running the stream cipher for a number different IVs – the cache
accesses that stay constant are the ones that are independent of the ci-
pher and can thus be ignored.

In all cases, if the noise can not be eliminated completely, discarding
the set of measurements is always an option. As will be described in
Section 3, our attack technique already works if noise-free measurements
are possible only once in a while.

Handling Cache Line Sizes: In theory, addresses of cache lines translate
into information about the table indices used. However, in real-world
cache timing attacks, a cache line can hold several table entries, i.e. a
cache line represents several table indices. Thus, even if the adversary
could do noise-free measurements, he would still not learn the exact table
indices used, but only obtain b bits of partial information about the table
index.

Consider the case of the popular Pentium 4 processors as an example.
All LFSR lookup tables used by the ciphers in this paper contain 256 32-
bit entries, i.e. each table entry fills 4 bytes. A cache line in a Pentium 4
processor is 64 bytes broad, meaning that it can contain 16 table entries.
Thus, given the correct cache line, the adversary learns only a subset of
16 table entries which contains the right one. Since these table entries
are typically aligned4, this corresponds to learning the b = 4 most signif-
icant bits of the table index, while the adversary obtains no information
whatsoever about the 4 least significant ones.

More generally, if a table contains 2c entries of d bytes each, and if
the processor has a cache line size of λ bytes, then each cache line will
hold λ/d table entries. Thus, even in a completely noise-free scenario, the
attacker can not reconstruct more than the uppermost b = c− log2(λ/d)
bits of the table index (i.e. c bits in the best and 0 bits in the worst case).

3 General Framework of the Attack

In this section we present the general framework of our cache timing
attack. All ciphers that make use of a LFSR for which clocking the LFSR
involves table lookups are covered by this framework. This includes the
4 If they aren’t, the attack gets easier, since certain lines leak more information than

assumed here.



stream ciphers Sosemanuk, Snow, Sober and Turing, which we will analyze
separately below.

3.1 Basic Idea

Observing inner state bits: Given a stream cipher with an LFSR of length
n defined over F2m we denote by

s = (s0, . . . , sn−1) ∈ Fn2m

the initial state of the LFSR after initialization and by

(st, . . . , st+n−1) ∈ Fn2m

its internal state at time t. Our model assumes that for clocking the LFSR
the implementation makes use of table lookups. This is the case for almost
all stream ciphers using an LFSR defined over F2m , the reason being that
this usually is the fastest manner to implement multiplication by one
fixed element in F2m . At time t this table lookup uses some bits of one of
the elements st+i for 0 ≤ i < n (in the case of Sosemanuk, Snow, Sober
and Turing it involves 8 bits). Depending on the cache line size (cf. the
discussion above) the cache timing measurements will reveal b of those
bits. The trivial, but important, observation is that all those bits can be
expressed as linear combinations of bits of the initial state s. Moreover,
computing the actual linear combination can easily be done as follows.

Transforming into initial state bits: Elements in F2m can be identified
with m-bit words (i.e. elements of Fm2 ) via a vectorspace isomorphism

ψ : F2m → Fm2 .

Using the isomorphism ψ we can consider the state of the LFSR as an
element in Fnm2 instead of an element of Fn2m via

(st, . . . , st+n−1)→ (ψ(st), . . . , ψ(st+n−1)).

Then, clocking the LFSR can be described by applying an invertible nm×
nm matrix over F2 to the current state. This is true simply because
updating the LFSR is certainly a F2m-linear operation and therefore in
particular F2-linear. We denote the matrix that corresponds to updating
the LFSR by M . Moreover, the matrix M can be easily computed given
the feedback polynomial of the LFSR.



Each table lookup reveals some bits of st+i, i.e. ψ(st+i)(a..a+b−1) for
some a ∈ {0, . . . ,m− b− 1}. Writing ψ(st+i) as M tψ(s) we see that

ψ(st+i)(a..a+b−1) = [M tψ(s)](a
′..a′+b−1)

for some a′ ∈ {0, . . . , nm − b − 1} and thus linear in the bits of the
initial state as claimed. In this way, each bit observed in a cache timing
measurement yields a linear equation in the initial state bits, and once
sufficiently many equations have been collected, the initial state can be
retrieved by solving the equation system.

3.2 Number of Required Noise-Free Measurements

Practical problems: It remains to discuss the number of measurements
that are required to obtain a solvable equation systems. We start by
pointing out that in practice, we can not expect to obtain all cache mea-
surements that seem possible in theory. The following problems can occur,
but as it turns out, they can be overcome using the linearity of the above
equations:

1. If the cipher clocks the LFSR several (say c) times for each call to
Keystream(i), or if the table is accessed several times for each clock,
then a synchronous adversary can not measure each single table access
separately. Instead, he learns c indices at a time (see e.g. Sosemanuk,
where c = 4). This implies that the attacker gets to know the values

ψ(st+i)(a..a+b−1), . . . ψ(st+i+c−1)(a..a+b−1)

but not the order of those.
This problem can be dealt with by forming a linear equation using
the sum of all the observed values. This way, the adversary obtains
only 1 observation (instead of c) for each round, but otherwise, there
is no effect on the overall effort of the attack.

2. Also in the case where a table is accessed several times for each call
to Keystream(i), there is the problem of collisions. If two or more
table accesses use the same cache line, then above trick no longer
works. For example, if he measures accesses to cache lines L1, L2, L3

for Sosemanuk (4 accesses per call), then he does not know which
cache line information he has to use twice. Guessing is usually not
a good strategy, since it rapidly increases the overall work effort for
the attack. Instead, if such collisions are not too frequent, simply
discarding the measurements and trying again next round gives much
better results.



3. As described in Section 2, the number of bits available for analysis
depends on the cache line size. In particular, for processors with large
cache lines, the information available decreases. Nonetheless, as long
as at least one bit of information leaks, the attack still works as de-
scribed above.

Number of Noise-Free Measurements: Assume we are attacking an LFSR
with an internal state of n elements of F2m and the cache measurement
reveals only a fixed linear combination of internal state bits at each k-
th iteration. In this case, nmk iterations suffice to completely reveal the
initial state of the LFSR. The easiest way to see that is to interpret the
initial state s of the LFSR as an element of F2nm (see for example [12,
Chapter 8] for details). Clocking the LFSR corresponds to multiplying the
internal state by a fixed element α ∈ F2nm and the information leaking
at time T = tk can be written as uT = Tr(θ(αk)ts) for an fixed element
θ ∈ F2nm depending on the linear combination of bits that are leaked.
Here Tr denotes the trace function

Tr : F2nm → F2

Tr(x) =
nm−1∑
i=0

x2i
.

The usual requirement that the LFSR should have maximal period cor-
responds to α being a primitive element in F2nm . Thus, for reasonably
small k, the element αk is not in a proper subfield of F2nm and

(αk)0, (αk)1, . . . , (αk)nm−1

form an F2 basis of F2nm . Therefore, all the linear equations uT = Tr(θ(αk)ts)
for T = tk, t ≤ nm− 1 are linearly independent and the initial state can
be uniquely recovered by solving the corresponding system of linear equa-
tions.

Note that this result only holds if all known keystream bits are ex-
actly equidistant. For the ciphers discussed in this paper, this effect can
be achieved by measuring only 1 bit for each clocking of the LFSR (where
in principle, we could measure b or even 2b bits). If, however, some mea-
surements have to be discarded due to collisions or noise, then the result
can not be applied. Nonetheless, it is still very likely that we need only
a very small overhead of noise-free measurements to get a uniquely solv-
able system. Namely, under the assumption that it behaves like a random



system of linear equations, the probability that after nm + δ noise-free
measurements the resulting system has full rank is given by

p =
nm−1∏
j=0

2nm+δ − 2j

2nm+δ
≈ 1− 2−δ.

For example, when using the Sosemanuk parameters n = 10 and m = 32,
the equation system will have rank nm with probability > 0.969 after
only δ = 5 additional noise-free measurements.

4 Analyzing Specific Ciphers

In this section we apply our general framework to the ciphers Sosemanuk,
Snow, Sober and Turing. All ciphers are described briefly, giving only the
details required to understand the attack.

For all those ciphers it turns out that once the internal state of the
LFSR is recovered, the remaining bits of the internal state (if any) can be
determined very efficiently. We explain the attack on Sosemanuk in detail;
the other ciphers are discussed much shorter as the general approach is
always the same.

In order to simplify notation in this section, we do not explicitly
write the isomorphism operator ψ but assume that the reader is aware of
whether a given vector is in F2m or in Fm2 .

4.1 Analysis of Sosemanuk

The Sosemanuk cipher was proposed by Berbain et al. in 2005 as an
eStream candidate [1]. Sosemanuk consists of a 10-word LFSR over F232 , a
finite-state machine (FSM) with two 32-bit words, and an output function
combining LFSR and FSM output into the keystream. No valid attacks
against the cipher have been proposed so far.

LFSR: The linear recursion of the LFSR is defined by

st+10 = st+9 ⊕ α−1st+3 ⊕ αst,

where α is a fixed element in F232 . An optimized implementation of the
multiplications by α and α−1 uses 8x32-bit lookup tables T1 and T2. Ignor-
ing the isomorphism operator ψ, the multiplications can be implemented
as follows:

x · α =
(

(x� 8)⊕ T1[x(24..31)]
)

x · α−1 =
(

(x� 8)⊕ T2[x(0..7)]
)
.



FSM: In addition, we need a simplified description of the FSM. If we
denote the two 32-bit state words by R1 and R2 and the inner state
words of the LFSR by st as above, we can describe the production of an
intermediate value ft as follows:

R1t = Update1(R1t−1, R2t−1, st+1, st+8)
R2t = Update2(R1t−1)
ft = (st+9 �R1t)⊕R2t

We don’t need the internals of the functions Update1 and Update2 for
the analysis.

Output: Before producing output, Sosemanuk will clock the LFSR 4 times
and generate four intermediate values. Then the keystream output is gen-
erated as

(zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st),

where we don’t have to know more about the Serpent1 function than that
it is a permutation that is easily invertible.

Cache Timing Attack

Cache Measurements: Assume for simplicity that b = 8, i.e. that the
adversary observes all 8 bits of the table indices for T1 and T2 after any
output block of his choice. This means that he obtains 4 measurements
of accesses to T1 and T2 each. In the case of T1, he knows that they
correspond to inner state bytes

s
(24..31)
t , s

(24..31)
t+1 , s

(24..31)
t+2 , s

(24..31)
t+3 ,

but he does not know the correct order. The same also holds for the
accesses to T2, which give information about

s
(0..7)
t , s

(0..7)
t+1 , s

(0..7)
t+2 , s

(0..7)
t+3

without revealing the proper ordering.

Reconstructing the LFSR State: The attacker knows at each time T = 4t
the values

uT = s
(24..31)
t ⊕ s(24..31)

t+1 ⊕ s(24..31)
t+2 ⊕ s(24..31)

t+3 (1)



and
vT = s

(0..7)
t ⊕ s(0..7)

t+1 ⊕ s
(0..7)
t+2 ⊕ s

(0..7)
t+3 , (2)

as those sums do not depend on the ordering anymore. As both Eq. 1
and 2 yield b = 8 linear equations over F2, we get a total of 16 linear
equations for the initial state s at each time T . It turns out that after
20 LFSR clockings the resulting 320 equations already have full rank and
therefore the initial state can easily be computed given uT , . . . , uT+19 and
vT , . . . , vT+19. Note that if b < 8, then the number of LFSR clockings
whose timings have to be observed is 320/2b = 160/b.

Reconstructing the FSM State: Given the correct inner state of the LFSR,
the inner state of the FSM is easily reconstructed. To this end, we proceed
as follows:

1. Given output words zt, . . . , zt+3, the adversary can subtract st, . . . , st+3

and obtains the output of the Serpent1 S-box.
2. The S-box is invertible, yielding the values ft, . . . , ft+3.
3. The adversary guesses the state of R1t (32 bits), which allows him to

compute the state of R2t from the equation ft = (st+9 �R1t)⊕R2t.
4. The adversary updates the state of the FSM once to obtain R1t+1

and R2t+1. He checks whether the output matches the observed ft+1.

Normally, after this step, only the correct guess for R1t should have sur-
vived. If more guesses survive, one simply continues updating the in-
ner state and checking against the output, until the state (R1, R2) is
uniquely determined. In total, this step requires not more than 232 sim-
ple guess-and-determine steps. Note that algorithmically more elegant
ways of reconstructing the FSM state might exist, but since 232 guess-
and-determine steps are easily computable on e.g. a standard PC, we did
not search for such attacks.

Resources: The overall effort for the attack is dominated by reconstruct-
ing the FSM state and therefore has an overall complexity of 232 guess-
and-determine steps, and the memory consumption is dominated by the
space for storing the 320× 320-bit equation system. Thus, assuming the
availability of noise-free timing observations for ≈ 160/b LFSR clockings,
we have an efficient cache timing attack against Sosemanuk.

4.2 Analysis of Snow 2.0

Snow 2.0 was proposed by Ekdahl and Johansson in 2002 [9]. It uses an
LFSR over F232 of length 16, an FSM with two 32-bit words, and an



output function combining LFSR and FSM output into the keystream.
No valid attacks against the cipher have been proposed so far.

LFSR: The linear recursion of the LFSR is defined by

st+16 = α−1st+11 ⊕ st+2 ⊕ αst,

where α is a fixed element in F232 . Just as for Sosemanuk, two 8x32-tables
T1 and T2 are involved for the multiplication by α and α−1. Each of them
is called exactly once for each state update.

FSM: Snow uses a FSM consisting of two 32-bit words R1t and R2t. The
exact specification is not important for our attack. It suffices to know
that given the internal state, the output stream and one of the two words
of the FSM the remaining word is uniquely determined.

Cache Timing Attack

Cache Measurements: Assuming precise measurements, the adversary ob-
tains the uppermost b bits of the table indices for T1 and T2. In each
round, he obtains one measurement for T1 and T2 each. In the case of
T1, he knows that they match to inner state bytes s(31−b+1..31)

t and in the
case of T2 the attacker learns s(7−b+1..7)

t . As both observations yield b lin-
ear equations over F2, we get a total of 2b linear equations for the initial
state s for each LFSR clocking. Thus, after approximately 512/2b = 256/b
LFSR clockings, the equation system can be solved.

Reconstructing the FSM State: As mentioned above, the inner state of
the FSM consists of two words. As for Sosemanuk, by guessing one word
(e.g R1t), the adversary can derive the other. He can then update the
inner state and verify whether his guess was correct. Again, the expected
workload is not more than 232 simple guess-and-determine steps.

4.3 Analysis of Sober-128

Sober-128 was proposed by Hawkes and Rose in 2003 [11]. It makes use
of an LFSR over F232 of length 17, a key dependent 32-bit constant K,
and a nonlinear output function combining the LFSR and the constant
K into the keystream.



Size of Guessing # Cache Measurements Known
eq. system Steps General Pentium 4 Keystream

Sosemanuk 320 232 160/b clks 40 clks 16 bytes
Snow 2.0 512 232 256/b clks 64 clks 8 bytes
Sober-128 544 - 544/b clks 136 clks 4 bytes
Turing 544 - 544/b clks 136 clks -

Table 1. Attack parameters against various ciphers

LFSR: The linear recursion of the LFSR is defined by

st+17 = st+15 ⊕ st+4 ⊕ αst,

where α is a fixed element in F232 . Just as for Sosemanuk and Snow 2.0,
multiplication by α is done using a lookup table.

Cache Timing Attack Assuming precise measurements, the adversary ob-
serves b bits for each round, i.e. s(7−b+1..7)

t . Thus, after ≈ 544/b rounds,
we expect to be able to reconstruct the LFSR state. Given this state, the
constant K can trivially be computed given one keystream word.

4.4 Analysis of Turing

Turing was introduced by Rose and Hawkes in 2002 [21]. It is based on
the same LFSR as Sober-128 and uses a fixed non-linear filter function on
the internal state of the LFSR to generate the keystream. In particular
the cache timing part is exactly the same as for Sober-128. As the internal
state of Turing consists only of the LFSR state, no additional bits have to
be recovered and in particular no keystream bits are needed to perform
the attack.

5 Conclusions

We have shown how to mount cache timing attacks against all word-based
LFSR implementations that use lookup tables to speed up multiplications.
As described above such ciphers are especially vulnerable to cache timing
attacks. All of them we are aware of can be broken very efficiently within
our theoretical model.

What is more, our attack is tolerant with respect to noisy measure-
ments: the information delivered by the cache timings may be few (1 bit
once in a while is enough) and far between (the distances between the bits



can be arbitrary). This is due to the fact that a noise-free measurement
always reveals a linear equation for the internal state. Thus, as long as
we can detect errors, we can simply discard noisy measurements with-
out significantly increasing the complexity of the equation system to be
solved.

Clearly, implementing cache timing attacks on real life systems is a
difficult and cumbersome task that requires dedicated skills. However,
due to the reasons outlined above, we anticipate that it is significantly
easier to implement our attack on the above mentioned stream ciphers
than most other cache timing attacks.

Countermeasures: A possible countermeasure is to split the lookup table
into several, smaller tables such that each table fits into one cache line.
Here is a short example using C notation. Suppose LinTab[256] is a
lookup table with 32-bit entries and our processor has cache lines of 64
bytes, so each cache line can contain at most 16 table entries. The linearity
of the table can be exploited to compute LinTab[x] using two smaller
tables LinTabUpper[16] and LinTabLower[16] with entries defined as:

for(y=0; y<16; y++) LinTabUpper[ y ] = LinTab[ y << 4 ];
for(y=0; y<16; y++) LinTabLower[ y ] = LinTab[ y ];

The linearity of LinTab[] means that we can generate the value of
LinTab[x] at compute time using five operations:

LinTabUpper[ x >> 4 ] ^ LinTabLower[ x & 0xF ];

This way, no information about the cache entries can be obtained by
timing measurements because LinTabUpper[] and LinTabLower[] each
fit within one cache line. It should be noted that there is a performance
penalty since the one table-lookup operation is replaced by five opera-
tions, and this performance penalty might be prohibitively large for the
speed-sensitive stream ciphers.

References

1. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sibert. SOSE-
MANUK, a fast software-oriented stream cipher. eStream submission,
http://www.ecrypt.eu.org/stream/sosemanuk.html, 2005.

2. D. Bernstein. Cache timing attacks on AES.
http://cr.yp.to/papers.html#cachetiming, 2005.



3. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo. AES power
attack based on induced cache miss and countermeasure. In International Sympo-
sium on Information Technology: Coding and Computing (ITCC 2005), volume 1,
pages 586–591. IEEE Computer Society, 2005.

4. J. Blömer and V. Krummel. Analysis of countermeasures against access driven
cache attacks on AES. In C. Adams, A. Miri, and M. Wiener, editors, Proc. SAC
2007, volume 4876 of LNCS, pages 96–109. Springer, 2007.

5. J. Bonneau and I. Mironov. Cache-collision timing attacks against AES. In
L. Goubin and M. Matsui, editors, Proc. CHES 2006, volume 4249 of LNCS, pages
201–215. Springer, 2006.

6. E. Brickell, G. Graunke, M. Neve, and S. Seifert. Software mitigations to hedge
AES against cache-based software side-channel vulnerabilities.
http://eprint.iacr.org/2006/052.pdf, 2006.

7. A. Canteaut, C. Lauradoux, and A. Seznec. Understanding cache attacks. Tech-
nical Report 5881, INRIA, 2006.

8. P. Ekdahl and T. Johansson. SNOW - a new stream cipher.
http://www.it.lth.se/cryptology/snow/. NESSIE project submission.

9. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In
H. Heys and K. Nyberg, editors, Proc. SAC 2002, volume 2595 of LNCS, pages
47–61. Springer, 2002.

10. B. Gierlichs, L. Batina, C. Clavier, T. Eisenbarth, A. Gouget, H. Handschuh,
T. Kasper, K. Lemke-Rust, S. Mangard, A. Moradi, and E. Oswald. Susceptibility
of eSTREAM candidates towards side channel analysis. In C. de Cannière and
O. Dunkelmann, editors, SASC ’08 Workshop Record, pages 123–150, 2008.

11. P. Hawkes and G. Rose. Primitive specification for Sober-128.
http://www.qualcomm.com.au/Sober128.html.

12. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.
13. M. Neve and J. Seifert. Advances on access-driven cache attacks on AES. In

E. Biham and A. Youssef, editors, Proc. SAC 2006, volume 4356 of LNCS, pages
147–162. Springer, 2006.

14. M. Neve, J. Seifert, and Z. Wang. Cache time-behavior analysis on AES.
http://www.cryptologie.be/document/Publications/AsiaCSS full 06.pdf, 2006.

15. M. Neve, J. Seifert, and Z. Wang. A refined look at bernstein’s AES side-channel
analysis. In Proc. AsiaCSS 2006, page 369. ACM, 2006.

16. M. O’Hanlon and A. Tonge. Investigation of cache-timing attacks on AES.
http://www.computing.dcu.ie/research/papers/2005/0105.pdf, 2005.

17. D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The
case of AES.
http://eprint.iacr.org/2005/271.pdf, 2005.

18. D. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The
case of AES. In D. Pointcheval, editor, Proc. CT-RSA 2006, volume 3860 of LNCS,
pages 1–20. Springer, 2006.

19. D. Page. Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical Report CSTR-02-003, University of Bristol, June 2002.
http://www.cs.bris.ac.uk/Publications/pub info.jsp?id=1000625.

20. C. Percival. Cache missing for fun and profit. Paper accompanying a talk at
BSDCan 2005; available at
http://www.daemonology.net/papers/htt.pdf, 2005.

21. G. Rose and P. Hawkes. Turing: A fast stream cipher. In T. Johansson, editor, Proc.
Fast Software Encryption 2003, volume 2887 of LNCS, pages 290–306. Springer,
2003.



22. R. Salembier. Analysis of cache timing attacks against AES. Scholarly Paper, ECE
Department, George Mason University, Virginia; available from:
http://ece.gmu.edu/courses/ECE746/project/F06 Project resources/
Salembier Cache Timing Attack.pdf, May 2006.

23. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, and H. Miayuchi. Cryptanalysis of
DES implemented on computers with cache. In C. Walter, Ç. Koç, and C. Paar,
editors, Proc. CHES 2003, volume 2779 of LNCS, pages 62–76. Springer, 2003.

24. Y. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miayuchi. Cryptanalysis of block
ciphers implemented on computers with cache. In Proc. ISITA 2002, 2002.

25. Z. Wang and R. Lee. New cache designs for thwarting software cache-based side
channel attacks. In Proc. ISCA 2007, pages 494–505. ACM, June 2007.

26. E. Zenner. A cache timing analysis of HC-256. In R. Avanzi, L. Keliher, and
F. Sica, editors, Proc. SAC ’08, volume 5381 of LNCS, pages 199–213. Springer,
2009.

A Cache Timing Attack Basics

In the following, we give a short introduction to cache timing attacks.
For more detailed information, the reader is referred to the introductory
papers by Bernstein [2] and Osvik, Shamir, and Tromer [17, 18].

Cache motivation: Modern processors store data in different types of
storage. Data that is currently being processed is stored in the so-called
registers; however, only few of these are available. Instead, reasonably
large amounts of data (such as look-up tables or S-boxes) are stored in
RAM. Since access to RAM is relatively slow compared to executing an
arithmetic operation, frequently used data is also stored in an intermedi-
ate type of memory, the so-called cache.

Cache workings: The CPU cache of modern processors is organised into
blocks – so-called lines – of λ bytes. Correspondingly, RAM is considered
to be (virtually) divided into λ-byte lines. When loading data from RAM
into a CPU register, the system first checks whether the corresponding
RAM line already lies in cache. If yes, it is loaded directly from cache,
which is very fast. If not, it is first loaded from RAM to cache, which
takes longer. Mapping from RAM to cache is typically by a simple mod-
ulo operation, i.e. if the cache can hold n lines and if the data lies in
RAM line a, then it is loaded into cache block a mod n. This means that
neighbouring data in RAM (e.g. tables) stays clustered in cache.

A simple attack: As an example, consider the prime-then-probe method
presented in [18]. The adversary starts by filling all the cache with his own
data. Then the legitimate user U gets the read/write token. U loads the



data required for his own computations into cache, where it evicts the
adversary’s data. When the adversary reobtains the read/write token, he
tries to reload his own data from cache. For each cache line, if this takes
long, it means that U has evicted the corresponding data.

From this analysis, the adversary obtains a profile of cache blocks that
have been used by U . This profile is a noisy version of the cache lines
that have been used for the encryption. By repeating the experiment a
number of times, a good approximation of the real cache access profile
can be obtained.

Note that the adversary does not learn the data that was written in
the cache by U – he learns something about the addresses of the data
that was used. In the case of an LFSR, this corresponds to the indices of
the LFSR cells that were accessed.


