
Cache Timing Analysis of eStream Finalists

Erik Zenner

Technical University Denmark (DTU)
Department of Mathematics

e.zenner@mat.dtu.dk

Dagstuhl, Jan. 15, 2009

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 1 / 24



1 Cache Timing Attacks

2 Attack Model

3 Analysing eStream Finalists

4 Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 2 / 24



Cache Timing Attacks

Outline

1 Cache Timing Attacks

2 Attack Model

3 Analysing eStream Finalists

4 Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 3 / 24



Cache Timing Attacks

Cache Motivation

What is a CPU cache?

Intermediate memory between CPU and RAM

Stores data that was recently fetched from RAM

What is is good for?

Loading data from cache is much faster than loading data from RAM
(e.g. RAM access ≈ 50 cycles, cache access ≈ 3 cycles).

Data that is often used several times.

⇒ Keeping copies in cache reduces the average loading time.

Why is this a problem?

As opposed to RAM, cache is shared between users.

⇒ Cryptographic side-channel attack becomes possible.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 4 / 24



Cache Timing Attacks

Cache Workings

Working principle (simplified): Let n be the cache size.
When we read from (or write to) RAM address a, proceed as follows:

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 5 / 24



Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 6 / 24



Cache Timing Attacks

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:

1 A fills all of the cache with his own data, then he stops working.

2 B does his encryption.

3 A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 7 / 24



Cache Timing Attacks

Example

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see that B used
a table (e.g. S-Box,
lookup-table etc.).

3 We can also see which table
entries have been used.

Note: Adversary learns only the
table indices used by B, but not the
table contents!

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 8 / 24



Cache Timing Attacks

Example

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see that B used
a table (e.g. S-Box,
lookup-table etc.).

3 We can also see which table
entries have been used.

Note: Adversary learns only the
table indices used by B, but not the
table contents!

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 8 / 24



Cache Timing Attacks

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Cache data is not organised in bytes, but in blocks.
⇒ We do not learn the exact index, but only some index bits.

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, these difficulties can often be overcome in practice (Bernstein
2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 9 / 24



Attack Model

Outline

1 Cache Timing Attacks

2 Attack Model

3 Analysing eStream Finalists

4 Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 10 / 24



Attack Model

Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the
algorithm.

Who is responsible - cryptographers or implementers?

⇒ Both!

Ideal: Cryptographers design algorithms that are not vulnerable to
side-channel attacks.

This saves all implementers the trouble of introducing protection
measures.

However: Cryptographers have to make assumptions (model) about
the target system.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 11 / 24



Attack Model

Attacking Algorithms vs. Implementations

Basically, side-channel attacks target the implementation, not the
algorithm.

Who is responsible - cryptographers or implementers? ⇒ Both!

Ideal: Cryptographers design algorithms that are not vulnerable to
side-channel attacks.

This saves all implementers the trouble of introducing protection
measures.

However: Cryptographers have to make assumptions (model) about
the target system.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 11 / 24



Attack Model

Assumptions for our Cryptanalysis

Available oracles:

Adversary can trigger key/IV setup with IV of his choice.

Adversary can step through the stream cipher, one round at a time
(Osvik et al.: “synchronous” attack)

Adversary can obtain any keystream block of his choice.

Adversary can obtain any precise cache measurement of his choice.
(new!)

Limitations:

Adversary is limited to “realistic” number of keystream blocks.

Adversary is limited to small number of cache measurements.

Adversary is limited to “realistic” computational resources.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 12 / 24



Analysing eStream Finalists

Outline

1 Cache Timing Attacks

2 Attack Model

3 Analysing eStream Finalists

4 Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 13 / 24



Analysing eStream Finalists

What is eStream?

Project: eStream was a subproject of the European ECRYPT project
(2004-2008).
Purpose: Advance the understanding of stream ciphers and propose a
portfolio of recommended algorithms.

Brief history:

2004 (Fall): Call for contributions.

2005 (Spring): Submission of 34 stream ciphers for evaluation.

2006 (Spring): End of evaluation phase 1, reduction to 27 candidates.

2007 (Spring): End of evaluation phase 2, reduction to 16 finalists.

2008 (April 15): Announcement of the final portfolio of 8 ciphers.

2008 (Sept. 8): Reduction to 7 ciphers due to new cryptanalysis.

Portfolio (Software): HC-128, Rabbit, Salsa20/12, Sosemanuk
Portfolio (Hardware): Grain, MICKEY (v2), Trivium

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 14 / 24



Analysing eStream Finalists

eStream Software Finalists

Cipher Tables Relevant

CryptMT none -

Dragon Two 8× 32-bit S-Boxes †
HC-128 Two 512× 32-bit tables
HC-256 Two 1024× 32-bit tables †
LEX-128 One 8× 8-bit S-Box (ref. code)

Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box †
Rabbit none -

Salsa-20 none -

Sosemanuk One 8× 32-bit table,
eight 4× 4-bit S-Boxes (ref. code) †

†: Uses tables, thus potentially vulnerable

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 15 / 24



Analysing eStream Finalists

Dragon

Table use:

Dragon uses two 8× 32-bit S-Boxes.

Each S-Box fills 16 cache blocks (Pentium 4).

For each round, each S-box is called 12 times.

For each S-Box, up to 12 out of 16 cache blocks are accessed (on
average: 8.6).
⇒ Less information than we hoped for.

It is unclear in which order those cache blocks were accessed. If a full
12 different blocks were accessed for both S-boxes, there would be
257.7 possible ways of ordering them.

Status:

Not fully analysed yet.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 16 / 24



Analysing eStream Finalists

HC-256

Table use:

Two 1024× 32-bit tables.

Main problem: huge inner state.

Attack at SAC 2008:

Computation time: equivalent to 255 key setups.
Memory requirement: 3 MByte
Known keystream: 8 kByte
Precise cache measurements: 6148 rounds

Status:

Theoretically broken, but not relevant in practice.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 17 / 24



Analysing eStream Finalists

HC-128

Table use:

Two 512× 32-bit tables.

Surprisingly big changes compared to HC-256.

Very relevant for the cache timing attack.

Attack from SAC 2008 can not be transferred.

Status:

Not fully analysed yet.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 18 / 24



Analysing eStream Finalists

LEX-128

Table use:

Eight 8× 32-bit S-Boxes (optimised code).

Based on AES.

Similar attacks applicable, both against key/IV setup and against
keystream generation.

Known protection measures (smaller S-boxes, bitslice implementation)
applicable.

Status:

Optimised implementation breakable in practice. Protection measures have
to be applied.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 19 / 24



Analysing eStream Finalists

NLS v2

Table use:

One 8× 32-bit S-Box.

Work submitted for publication (Joint work with Gregor Leander).

Attack retrieves the uppermost byte of each inner state word:

Computation time: 245 guess-and-determine steps.
Memory requirement: negligible
Known keystream: 23 upper bytes
Precise cache measurements: 26 rounds

Not obvious how to retrieve the lowermost bytes
(S-box removed, but need to solve AXR system)

Status:

Theoretical weakness which does not seem to lead to a practical vulnerability.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 20 / 24



Analysing eStream Finalists

Sosemanuk (1)

Table use:

One 8× 32-bit table to speed up computations in GF(232),
some implementations also eight 4× 4-bit S-Boxes (not used for analysis)

Work submitted for publication (Joint work with Gregor Leander).

Attack targets LFSR:

Any (cache timing) information about the inner state can be
incorporated into linear equation system.
Ordering problem (→ Dragon) can be solved by using slightly more
measurements.
Retrieving of LFSR state (320 bit) by solving linear equation system.
Retrieving the nonlinear state (64 bit) by 232 guessing steps.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 21 / 24



Analysing eStream Finalists

Sosemanuk (2)

Attack parameters:

Computation time: 232 guess-and-determine steps,
+ solving a linear equation system with 320 unknowns in GF(2).

Memory requirement: 12.5 kByte (eq. system)
Known keystream: 1 output block (16 bytes)
Precise cache measurements: 20-40 rounds

(depending on cache block size)

Attack applies to all current designs with LFSRs over GF(232):
Snow, Sober, Turing,...

Status:

Practical break of Sosemanuk, Snow, Sober, Turing.
Protection of the implementation necessary.

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 22 / 24



Conclusions and Observations

Outline

1 Cache Timing Attacks

2 Attack Model

3 Analysing eStream Finalists

4 Conclusions and Observations

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 23 / 24



Conclusions and Observations

Conclusions and Observations

LFSR-based solutions (over large fields) very vulnerable due to
combination of lookup-table and linearity.

Most other stream ciphers surprisingly resistant against cache timing
attacks:

Given significant information about the inner state, we still can’t break
them efficiently!
Overdesigned for normal purposes?
Significant speed-up possible if we drop some of the more extreme
security requirements?

Toolbox for cryptanalysis pretty empty:

Most analysis methods require huge amounts of data and
computational resources (correlation attacks, non-trivial algebraic
attacks, BDD attacks, distinguishers based on small biases etc.).
Efficient tools: guess-and-determine, solving linear equations, others?
Tools for solving AXR problem (→ Ralf-Philipp’s talk) would come in
handy!

Erik Zenner (DTU-MAT) Cache Timing Analysis eStream Finalists Dagstuhl, Jan. 15, 2009 24 / 24


	Cache Timing Attacks
	Attack Model
	Analysing eStream Finalists
	Conclusions and Observations

