Authentication for RFID Tags: Observations on the HB Protocols

Erik Zenner

Technical University of Denmark (DTU) Department of Mathematics e.zenner@mat.dtu.dk

Aalborg, April 23, 2009

Authentication for RFID Tags

2 The Original HB Protocol

3 The HB+ Protocol

Outline

- 2 The Original HB Protocol
- 3 The HB+ Protocol
- 4 Extensions, Observations, and Open Problems

What is RFID?

- RFID = Radio Frequency Identification
- Idea: Small devices (tags) identify themselves to a reader by radio signals.
- **Applications:** Retail, medicine, logistics, passport, payments, animals, humans...
- Main focus today: Cheap RFID tags for low-cost applications (5-cent chip)

Security challenges

- Depend on application
- Main security goals: Authentication, privacy
- Problem: RFID Chips very limited (often even no battery)

	Sample	Requirements	
	RFID chip (2005)	AES-128	
RO memory	128-512 bit	key: 128 bit	
RW memory	32-128 bit	state: 256 bit	
Security circuit	200-2,000 gates	e.g. 3,400 gates	
Performance	100 reads/sec	-	

- Standard cryptographic primitives and protocols not usable
- New light-weight solutions required

Outline

- 2 The Original HB Protocol
 - 3 The HB+ Protocol
 - Extensions, Observations, and Open Problems

The Original HB Protocol

Protocol description

- Protocol proposed by Hopper and Blum (Asiacrypt 2001)
- Goal: Provide light-weight entity authentication
- Assumption: Tag and Reader share a key $x \in \{0,1\}^n$
- One round: (round j)

TagReaderCompute $u^j = a^j \circ x$ Draw $a^j \in_R \{0,1\}^n$ Draw $e^j \in_\eta \{0,1\}$ Compute $z^j = u^j \oplus e^j$ Compute $z^j = u^j \oplus e^j$ z^j Check $z_j \stackrel{?}{=} a^j \circ x$

- Repeat r times $(j = 1, \ldots, r)$
- Accept if a clear majority of responses is correct

• For the adversary, a full protocol run (r rounds) looks as follows:

$$\begin{pmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ a_1^3 & a_2^3 & \dots & a_n^3 \\ \dots & \dots & \dots & \dots \\ a_1^r & a_2^r & \dots & a_n^r \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \oplus \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \dots \\ \epsilon_r \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ \dots \\ z_r \end{pmatrix}$$

Retrieving (x₁,..., x_n) corresponds to decoding a random linear code.
Known as "Learning Parity with Noise" (LPN) problem, NP-hard.

• LPN forms the basis for security proof (against passive adversary).

The active adversary case

Known problem: Vulnerable against active adversary

- Active adversary can **choose** the challenges a^1, \ldots, a^r
- Pick the first challenges as $a^j = (1,0,0,\ldots,0)$
 - Tag always computes

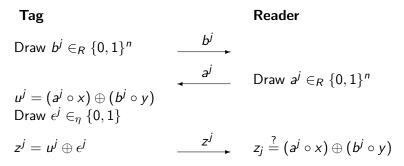
$$y^{j} = 1 \cdot x_{1} \oplus 0 \cdot x_{2} \oplus \ldots \oplus 0 \cdot x_{n} \oplus e^{j}$$
$$= x_{1} \oplus e^{j}$$

- All answers are noisy versions of x_1
- Majority decision reveals true value of x_1
- Repeat for x_2, \ldots, x_n

Improvement/Generalisation: (D. Ruano)

Choose the a^j s.th. they form a particularly efficient linear code
 ⇒ This reduces the number of chosen challenges required

Outline



- 2 The Original HB Protocol
- 3 The HB+ Protocol
- 4 Extensions, Observations, and Open Problems

The HB+ Protocol

Protocol description

- Protocol proposed by Juels and Weis (Crypto 2005)
- Goal: Make HB resistant against active attacks
- Assumption: Tag and Reader share two keys $x, y \in \{0, 1\}^n$
- One round: (round j)

- Repeat r times $(j = 1, \ldots, r)$
- Accept if a clear majority of responses is correct

Security: GRS attack (1)

- HB+ comes with a proof of security against active adversary
- But there exists an efficient attack!
- GRS attack (Gilbert/Robshaw/Sibert 2006):
 - Attacker modifies all r challenges by adding $(1, 0, \ldots, 0)$
 - Tag computes

$$\begin{aligned} z^{j} &= ((a^{j} \oplus (1, 0, \dots, 0)) \circ x) \oplus (b^{j} \circ y) \oplus \epsilon^{j} \\ &= (a^{j} \circ x) \oplus ((1, 0, \dots, 0) \circ x) \oplus (b^{j} \circ y) \oplus \epsilon^{j} \\ &= (a^{j} \circ x) \oplus x_{1} \oplus (b^{j} \circ y) \oplus \epsilon^{j} \end{aligned}$$

- Thus, all responses are changed by x_1 (either all are flipped, or none)
- Attacker observes reader's reaction: If he accepts, then $x_1 = 0$, otherwise $x_1 = 1$
- Repeat for x_2, \ldots, x_n

Security: GRS attack (2)

- Attack is only applicable in certain applications
- Attack is very simple and efficient (only $n \cdot r$ challenge/response pairs)
- But why is it possible (didn't we have a security proof)?
 - Proof model: Adversary modifies the challenges and observes the **tag's** response.
 - Here: Adversary modifies the challenges and observes the **reader's** response.
- Two ways of fixing the problem:
 - Use protocol only in situations that correspond to the original security model (detection-base model)
 - Modify the protocol to be secure in the new security model

Outline

- 2 The Original HB Protocol
- 3 The HB+ Protocol
- 4 Extensions, Observations, and Open Problems

The Quest for a new HB variant

• Many HB variants proposed and broken

Protocol	Year	Attack	Year
HB	2001	active	2001
HB+	2005	GRS	2006
HB^{++}	2006	GRS	2008
HB-MP	2007	passive	2008
HB*	2007	GRS	2008
$HB\operatorname{-}MP^+$	2008	passive	-
Trusted-HB	2008	MITM(*)	2009
HB [#]	2008	MITM(*)	2008

(*) requiring many challenge-response pairs

• Can HB be made resistant against GRS attacks without adding too much complexity?

HB+ limits: Upper bounds

The RFID chip itself puts **upper bounds** on the parameters:

- Total key size (x and y) < 450 bit, n < 225 bit
- Number of rounds r ≤ 100 (due to time and bandwidth constraints)
- Noise parameter small (to allow distinguishing between guessing and correct answers)

HB+ limits: Example

- Let us set n = 224, r = 100.
- Assume that we want a false acceptance (FA) rate of < 0.001
- Then we obtain the following false rejection (FR) rates:

η	0.30	0.25	0.20
threshold	34	34	34
FR rate	1:6	1:61	1:2976

i.e. we would need to use $\eta \leq 0.2$

HB+ limits: Lower bounds

On the other hand, attacks put lower bounds on the same parameters:

- Total key size (x and y) > 500 bit, n > 250 bit (due to best known LPN algorithm)
- Noise parameter ≥ 0.25 (due to standard technique against random codes)

Thus, upper and lower bounds contradict each other! \Rightarrow No good set of parameters for HB+

Conclusions

- Real need for RFID-suitable algorithms and protocols exists
- HB family promising, but not good enough
- Research directions:
 - Cryptanalysis 1: Better algorithms for LPN problem
 - Cryptanalysis 2: Better attacks against protocols
 - Design 1: Modify HB family to give full security
 - Design 2: Modify HB family s.th. consistent parameters exist
 - Design 3: Develop different types of RFID protocols

Questions? Comments?

3

E + 4 E +

Questions? Comments? Thank you for your attention!

3