
The Rabbit Stream Cipher

Martin Boesgaard1, Mette Vesterager1, and Erik Zenner2

1 Cryptico A/S
info@cryptico.com

2 Technical University of Denmark
e.zenner@mat.dtu.dk

Abstract. The stream cipher Rabbit was first presented at FSE 2003
[3], and no attacks against it have been published until now. With a
measured encryption/decryption speed of 3.7 clock cycles per byte on a
Pentium III processor, Rabbit does also provide very high performance.
This paper gives a concise description of the Rabbit design and some of
the cryptanalytic results available.
Keywords: Stream cipher, fast, non-linear, coupled, counter

1 Introduction

Rabbit was first presented at the Fast Software Encryption workshop in 2003
[3]. Since then, an IV-setup function has been designed [18], and additional
security analysis has been completed [16, 2], but no cryptographical weaknesses
have been revealed. The cipher is currently amongst the finalists of the stream
cipher project eStream.

The Rabbit algorithm can briefly be described as follows. It takes a 128-bit
secret key and a 64-bit IV (if desired) as input and generates for each iteration
an output block of 128 pseudo-random bits from a combination of the internal
state bits. Encryption/decryption is done by XOR’ing the pseudo-random data
with the plaintext/ciphertext. The size of the internal state is 513 bits divided
between eight 32-bit state variables, eight 32-bit counters and one counter carry
bit. The eight state variables are updated by eight coupled non-linear functions.
The counters ensure a lower bound on the period length for the state variables.

Rabbit was designed to be faster than commonly used ciphers and to justify
a key size of 128 bits for encrypting up to 264 blocks of plaintext. This means
that for an attacker who does not know the key, it should not be possible to
distinguish up to 264 blocks of cipher output from the output of a truly random
generator, using less steps than would be required for an exhaustive key search
over 2128 keys.

1.1 Organization and Notation

In Section 2, we describe the design of Rabbit in detail. We discuss the crypt-
analysis of Rabbit in Section 3, and in Section 4 the performance results are
presented.



We use the following notation: ⊕ denotes logical XOR, � and � denote left
and right logical bit-wise shift, ≪ and ≫ denote left and right bit-wise rotation,
and � denotes concatenation of two bit sequences. A[g..h] means bit number g

through h of variable A. When numbering bits of variables, the least significant
bit is denoted by 0. Hexadecimal numbers are prefixed by ”0x”. Finally, we use
integer notation for all variables and constants. Note that the description below
is specified for little-endian processors (e.g. most Intel processors).

2 The Rabbit Stream Cipher

The internal state of the stream cipher consists of 513 bits. 512 bits are divided
between eight 32-bit state variables xj,i and eight 32-bit counter variables cj,i,
where xj,i is the state variable of subsystem j at iteration i, and cj,i denotes
the corresponding counter variable. There is one counter carry bit, φ7,i, which
needs to be stored between iterations. This counter carry bit is initialized to
zero. The eight state variables and the eight counters are derived from the key
at initialization.

2.1 Key Setup Scheme

The algorithm is initialized by expanding the 128-bit key into both the eight state
variables and the eight counters such that there is a one-to-one correspondence
between the key and the initial state variables, xj,0, and the initial counters, cj,0.

The key, K [127..0], is divided into eight subkeys: k0 = K [15..0], k1 = K [31..16],
... , k7 = K [127..112]. The state and counter variables are initialized from the
subkeys as follows:

xj,0 =

{

k(j+1 mod 8) � kj for j even

k(j+5 mod 8) � k(j+4 mod 8) for j odd
(1)

and

cj,0 =

{

k(j+4 mod 8) � k(j+5 mod 8) for j even

kj � k(j+1 mod 8) for j odd.
(2)

The system is iterated four times, according to the next-state function defined
in section 2.3, to diminish correlations between bits in the key and bits in the
internal state variables. Finally, the counter variables are modified according to:

cj,4 = cj,4 ⊕ x(j+4 mod 8),4 (3)

for all j, to prevent recovery of the key by inversion of the counter system.

2.2 IV Setup Scheme

Let the internal state after the key setup scheme be denoted the master state,
and let a copy of this master state be modified according to the IV scheme. The



IV setup scheme works by modifying the counter state as function of the IV.
This is done by XORing the 64-bit IV on all the 256 bits of the counter state.
The 64 bits of the IV are denoted IV [63..0]. The counters are modified as:

c0,4 = c0,4 ⊕ IV [31..0] c1,4 = c1,4 ⊕ (IV [63..48] � IV [31..16])

c2,4 = c2,4 ⊕ IV [63..32] c3,4 = c3,4 ⊕ (IV [47..32] � IV [15..0])

c4,4 = c4,4 ⊕ IV [31..0] c5,4 = c5,4 ⊕ (IV [63..48] � IV [31..16]) (4)

c6,4 = c6,4 ⊕ IV [63..32] c7,4 = c7,4 ⊕ (IV [47..32] � IV [15..0]).

The system is then iterated four times to make all state bits non-linearly depen-
dent on all IV bits. The modification of the counter by the IV guarantees that
all 264 different IVs will lead to unique keystreams.

2.3 Next-state Function

The core of the Rabbit algorithm is the iteration of the system defined by the
following equations:

xj,i+1 =

{

gj,i + (gj−1 mod 8,i ≪ 16) + (gj−2 mod 8,i ≪ 16) for j even

gj,i + (gj−1 mod 8,i ≪ 8) + gj−2 mod 8,i for j odd
(5)

gj,i =
(

(xj,i + cj,i)
2 ⊕ ((xj,i + cj,i)

2 � 32)
)

mod 232, (6)

where all additions are modulo 232. This coupled system is illustrated in Fig. 1.
Before an iteration the counters are incremented as described below.

2.4 Counter System

The dynamics of the counters is defined as follows:

c0,i+1 =

{

c0,i + a0 + φ7,i mod 232 for j = 0

cj,i + aj + φj−1,i+1 mod 232 for j > 0,
(7)

where the carry φj,i+1 is given by

φj,i+1 =











1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0

1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0

0 otherwise,

(8)

Furthermore, the aj constants are defined as:

a0 = a3 = a6 = 0x4D34D34D,

a1 = a4 = a7 = 0xD34D34D3, (9)

a2 = a5 = 0x34D34D34.



x0,i x1,i

x7,i

x6,i

x5,i

x2,i

x3,i

x4,i

c1,ic0,i

c2,i

c3,i

c4,i

c7,i

c6,i

c5,i

<<<16

<<<8<<<

<<<8<<<

<<<8<<<

<<<8<<<

<<<16

<<<16

<<<16

<<<16

<<<16 <<<16

<<<16

Fig. 1. Graphical illustration of the next-state function.

2.5 Extraction Scheme

After each iteration, four 32-bit words of pseudo-random data are generated as
follows:

s
[15..0]
j,i = x

[15..0]
2j,i ⊕ x

[31..16]
2j+5 mod 8,i, (10)

s
[31..16]
j,i = x

[31..16]
2j,i ⊕ x

[15..0]
2j+3 mod 8,i.

where sj,i is word j at iteration i. The four pseudorandom words are then XOR’ed
with the plaintext/ciphertext to encrypt/decrypt.

3 Security Analysis

In this section we first discuss the key setup function, IV setup function, and
periodic properties. We then present an algebraic analysis of the cipher, ap-
proximations of the next-state function, differential analysis, and the statistical
properties.

3.1 Key Setup Properties

Design Rationale: The key setup can be divided into three stages: Key expansion,
system iteration, and counter modification.



– The key expansion stage guarantees a one-to-one correspondence between
the key, the state and the counter, which prevents key redundancy. It also
distributes the key bits in an optimal way to prepare for the the system
iteration.

– The system iteration makes sure that after one iteration of the next-state
function, each key bit has affected all eight state variables. It also ensures
that after two iterations of the next-state function, all state bits are affected
by all key bits with a measured probability of 0.5. A safety margin is provided
by iterating the system four times.

– Even if the counters are presumed known to the attacker, the counter mod-

ification makes it hard to recover the key by inverting the counter system,
as this would require additional knowledge of the state variables. It also
destroys the one-to-one correspondence between key and counter, however,
this should not cause a problem in practice (see below).

Attacks on the Key Setup Function: After the key setup, both the counter bits
and the state bits depend strongly and highly non-linearly on the key bits. This
makes attacks based on guessing parts of the key difficult. Furthermore, even
if the counter bits were known after the counter modification, it is still hard
to recover the key. Of course, knowing the counters would make other types of
attacks easier.

As the non-linear map in Rabbit is many-to-one, different keys could poten-
tially result in the same keystream. This concern can basically be reduced to the
question whether different keys result in the same counter values, since different
counter values will almost certainly lead to different keystreams3. Note that key
expansion and system iteration were designed such that each key leads to unique
counter values. However, the counter modification might result in equal counter
values for two different keys. Assuming that after the four initial iterations, the
inner state is essentially random and not correlated with the counter system,
the probability for counter collisions is given by the birthday paradox, i.e. for all
2128 keys, one collision is expected in the 256-bit counter state. Thus, counter
collisions should not cause a problem in practice.

Another possibility for related key attacks is to exploit the symmetries of the
next-state and key setup functions. For instance, consider two keys, K and K̃

related by K [i] = K̃ [i+32] for all i. This leads to the relation, xj,0 = x̃j+2,0 and
cj,0 = c̃j+2,0. If the aj constants were related in the same way, the next-state
function would preserve this property. In the same way this symmetry could
lead to a set of bad keys, i.e. if K [i] = K [i+32] for all i, then xj,0 = xj+2,0 and
cj,0 = cj+2,0. However, the next-state function does not preserve this property
due to the counter system as aj 6= aj+2.

3 The reason is that when the periodic part of the functional graph has been reached,
the next-state function, including the counter system, is one-to-one on the set of
points in the period.



3.2 IV Setup Properties

Design Rationale: The security goal of the IV scheme of Rabbit is to justify an
IV length of 64 bits for encrypting up to 264 plaintexts with the same 128-bit
key, i.e. by requesting up to 264 IV setups, no distinguishing from random should
be possible. There are two stages: IV addition and system iteration.

– The IV addition modifies the counter values in such a way that it can be
guaranteed that under an identical key, all 264 possible different IVs will
lead to unique keystreams. Note that each IV bit will affect the input of
four different g-functions in the first iteration, which is the maximal possible
influence for a 64-bit IV. The expansion of the bits also takes the specific
rotation scheme of the g-functions into account, preparing for the system
iteration.

– The system iteration guarantees that after just one iteration, each IV bit has
affected all eight state variables. The system is iterated four times in total
in order to make all state bits non-linearly dependent on all IV bits.

A full security analysis of the IV setup is given in [10]. It concludes that the
good diffusion and non-linearity properties (see below) of the Rabbit next-state
function seem to prevent all known attacks against the IV setup scheme.

3.3 Period Length

A central property of counter assisted stream ciphers [19] is that strict lower
bounds on the period lengths can be provided. The counter system adopted in
Rabbit has a period length of 2256 − 1 [3]. Since it can be shown that the input
to the g-functions has at least the same period, a very pessimistic lower bound
of 2215 can be guaranteed on the period of the state variables [18].

3.4 Partial Guessing

Guess-and-Verify Attack: Such attacks become possible if output bits can be
predicted from a small set of inner state bits. The attacker will guess the rele-
vant part of the state, predict the output bits and compare them with actually
observed output bits, thus verifying whether his guess was correct.

In [3], it was shown that the attacker must guess at least 2 ·12 input bytes for
the different g-functions in order to verify against one byte. This is equivalent
to guessing 192 bits and is thus harder than exhaustive key search. It was also
shown that even if the attacker verifies against less than one byte of output,
the work required is still above exhaustive key search. Finally, when replacing
all additions by XORs, all byte-wise combinations of the extracted output still
depend on at least four different g-functions (see section 3.6). To conclude, it
seems to be impossible to verify a guess of fewer than 128 bits against the output.



Guess-and-Determine Attack: The strategy for this attack is to guess a few of the
unknown variables of the cipher and from those deduce the remaining unknowns.
The system is then iterated a few times, producing output that can be compared
with the actual cipher output, verifying the guess.

In the following, we sketch an attack based on guessing bytes, with the coun-
ters being considered as static for simplicity. The attacker tries to reconstruct
512 bit of inner state, i.e. he observes 4 consecutive 128-bit outputs of the cipher
and proceeds as follows:

– Divide the 32-bit counter and state variables into 8-bit variables.
– Construct an equation system that models state transition and output. For

each of the 4 outputs, he obtains 8 ·2 = 16 equations. For each of the 3 state
transitions, he obtains 8 · 4 = 32 equations. Thus, he has an overall of 160
equations and 160 variables (4 · 32 state and 32 counter variables).

– Solve this equation system by guessing as few variables as possible.

The efficiency of such a strategy depends on the amount of variables that must be
guessed before the determining process can begin. This amount is lower bounded
by the 8-bit subsystem with the smallest number of input variables. Neglecting
the counters, the results of [3] illustrate that each byte of the next-state function
depends on 12 input bytes. When the counters are included, each output byte of
a subsystem depends on 24 input bytes. Consequently, the attacker must guess
more than 128 bits before the determining process can begin, thus making the
attack infeasible. Dividing the system into smaller blocks than bytes results in
the same conclusion.

3.5 Algebraic Attacks

Known Algebraic Attacks: The algebraic attacks on stream ciphers discussed in
the literature [1, 5, 6, 4, 7] target ciphers whose internal state is mainly updated
in a linear way, with only a few memory bits having a nonlinear update function.
This, however, is not the case for Rabbit, where 256 inner state bits are updated
in a strongly nonlinear fashion. In the following, we will discuss in some detail
the nonlinearity properties of Rabbit, demonstrating why the known algebraic
attacks are not applicable against the cipher.

The Algebraic Normal Form (ANF) of the g-function: A convenient way of rep-
resenting Boolean functions is through its algebraic normal form (see, e.g., [17]).
Given a Boolean function f : {0, 1}n → {0, 1}, the ANF is the representation of
f as a multivariate polynomial (i.e., a sum of monomials in the input variables).
Both a large number of monomials in the ANF and a good distribution of their
degrees are important properties of nonlinear building blocks in ciphers.

For a random Boolean function in 32 variables, the average total number
of monomials is 231, and the average number of monomials including a given
variable is 230. If we consider 32 such random functions, then the average num-
ber of monomials that are not present in any of the 32 functions is 1 and the
corresponding variance is also 1. For more details, see [8].



For the g-function of Rabbit, the ANFs for the 32 Boolean subfunctions have
an algebraic degree of at least 30. The number of monomials in the functions
range from 224.5 to 230.9, where for a random function it should be 231. The
distribution of monomials as function of degree is presented in Fig. 2. Ideally
the bulk of the distribution should be within the dashed lines that illustrate
the variance for ideal random functions. Some of the Boolean functions deviate
significantly from the random case, however, they all have a large number of
monomials of high degree.

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

Degree

lo
g 2(#

 m
on

om
ia

ls
)

Fig. 2. The number of monomials of each degree in each of the 32 Boolean functions
of the g-function. The thick solid line and the two dashed lines denote the average and
variance for an ideal random function.

Furthermore, the overlap between the 32 Boolean functions that constitute
the g-function was investigated. The total number of monomials that only occur
once in the g-function is 226.03, whereas the number of monomials that do not
occur at all is 226.2. This should be compared to the random result which has a
mean value of 1 and a variance of 1.

To conclude, the results for the g-function were easily distinguishable from
random. However, the properties of the ANFs for the output bits of the g-
function are highly complex, i.e. containig more than 224 monomials per output
bit, and with an algebraic degree of at least 30. Furthermore, no obvious ex-
ploitable structure seems present.

The Algebraic Normal Form (ANF) of the full cipher: It is clearly not feasible to
calculate the full ANF of the output bits for the complete cipher. But reducing
the word size from 32 bits to 8 bits makes it possible to study the 32 output
Boolean functions as function of the 32-bit key.

For this scaled-down version of Rabbit, the setup function for different num-
bers of iterations was investigated. In the setup of Rabbit, four iterations of



next-state are applied, plus one extra before extraction. We have determined
the ANFs after 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, where the +1 denotes
the iteration in the extraction.

The results were much closer to random than in the case of the g-function.
For 0+1 iterations, we found that the number of monomials is very close to
231 as expected for a random function. Already after two iterations the result
seems to stabilize, i.e. the amount of fluctuations around 231 does not change
when increasing the number of iterations. We also made an investigation of
the number of missing monomials for all 32 output bits. It turned out that for
the 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, the numbers were 0, 1, 2, 3 and 1,
respectively. This seems in accordance with the mean value of 1 and variance of 1
for a random function. So after a few iterations, basically all possible monomials
are present in the full cipher output functions.

Concluding, for the down-scaled version of the full cipher, no non-random
properties were identified. For full details of the analysis, including statistical
data, the reader may refer to [8].

Overdefined Equation Systems in the State: For simplicity, we ignore the coun-
ters and consider only the 256 inner state bits. Furthermore, we replace all
arithmetical additions by XOR and omit the rotations. The use of XOR is a
severe simplification as this will guarantee that the algebraic degree of the com-
plete cipher will never exceed 32 for one iteration (but, of course, grow for more
iterations).

With the inner state consisting of 256 bit, we need the output of at least two
(ideally consecutive) iterations, giving us a non-linear system of 256 equations
in 256 variables. Note that in the modified Rabbit design, everything is linear
with the exception of the g-functions. Thus, we can calculate the number of
monomials when expressing the output as a function of the state bits as follows:

– The output of the first iteration can be modelled as a linear function in the
inner state, according to Equ. (10). Thus, we obtain 128 very simple linear
equations, containing all 256 monomials of degree 1.

– In order to generate the output of the next iteration, however, the inner
state bits are run through the g-functions. Remember that 232−226.2 ≈ 231.97

monomials (are contained in the output of each g-functions. Thus, the second
set of equations contains approximately 8 · 231.97 = 234.97 monomials.

In particular, this means that the non-linear system of equations is neither
sparse, nor is it of low degree. Linearizing it increases the number of variables
to about 235, and in order to solve it, an extra 235 − 28 equations are required.
These can not be obtained by using further iterations, because this way, the
number of monomials increases beyond 2128. Analysis conducted in [8] indicates
that they can not be obtained by using implicit equations, either. If, however,
it would be possible to find such equations, the non-linear additions and the
counter system would most likely destroy their benefit. Thus, we do not expect
a algebraic attack using the inner state bits as variables to be feasible.



Overdefined Equation Systems in the Key: An algebraic attack targeting the key
bits is even more difficult, since there are at least five rounds iterations of the
non-linear layer before the first output bits can be observed (nine rounds if IV
is used). Thus, the ANF of the full cipher has to be considered. Remembering
that for the 8-bit version of the cipher, the ANF of the cipher is equivalent to a
random function after just two iterations, it becomes obvious that the number
of monomials in the equation system would be close to the maximum of 2128.
Solving such a system of equations would be well beyond a brute force search
over the key space.

3.6 Correlation Attacks

Linear Approximations: In [3], at thorough investigation of linear approxima-
tions by use of the Walsh-Hadamard Transform [17, 11] was made. The best
linear approximation between bits in the input to the next-state function and
the extracted output found in this investigation had a correlation coefficient of
2−57.8.

In a distinguishing attack, the attacker tries to distinguish a sequence gener-
ated by the cipher from a sequence of truly random numbers. A distinguishing
attack using less than 264 blocks of output cannot be applied using only the best
linear approximation because the corresponding correlation coefficient is 2−57.8.
This implies that in order to observe this particular correlation, output from
2114 iterations must be generated [13].

The independent counters have very simple and almost linear dynamics.
Therefore, large correlations to the counter bits may cause a possibility for a
correlation attack (see e.g. [14]) for recovering the counters. It is not feasible to
exploit only the best linear approximation in order to recover a counter value.
However, more correlations to the counters could be exploited. As this requires
that there exist many such large and useable correlations, we do not believe such
an attack to be feasible4.

Second Order Approximations: However, it was found that truncating the ANFs
of the g-functions after second order terms proposes relatively good approxima-
tions under the right circumstances.

We denote by f [j] the functions that contain the terms of first and second
order of the ANF of g[j]. Measurements of the correlation between f [j] and
g[j] revealed correlation coefficients of less than 2−9.5, which is relatively poor
compared to the corresponding linear approximations. However, the XOR sum
of two neighbor bits, i.e. g[j]⊕g[j+1] was found to be correlated with f [j]⊕f [j+1]

with correlation coefficients as large as 2−2.72. This could indicate that some
terms of higher degree vanish when two neighbor bits are XOR’ed.

4 Knowing the values of the counters may significantly improve both the Guess-and-
Determine attack, the Guess-and-Verify attack as well as a Distinguishing attack
even though obtaining the key from the counter values is prevented by the counter
modification in the setup function.



These results can be applied to construct second order approximations of the
cipher. The best one is correlated to the real function with a correlation coef-
ficient of 2−26.4, and a number of approximations with correlation coefficients
of similar size. Preliminary investigations were made with other XOR sums. In
general, sums of two bits can be approximated significantly better than single
bits. The sum of neighboring bits does, however, seem to be the best approx-
imation. Preliminary investigations show that approximations of sums of more
than two bits have relatively small correlation coefficients.

It is not trivial to use second-order relations in linear cryptanalysis, and even
the improved correlation values are not high enough for an attack as we know it.
In an attack it would be necessary to include the counter, and set up relations
between two consecutive outputs. We expect this to seriously complicate such
an attack and make it infeasible.

3.7 Differential Analysis

Difference scheme: Given two inputs x′ and x′′, and their corresponding outputs
y′ and y′′ (all in {0, 1}n), the following difference schemes were used:

– The subtraction modulus input and output differences are defined by ∆x =
x′ − x′′ mod 2n and ∆y = y′ − y′′ mod 2n, respectively.

– The XOR difference scheme is defined by ∆x = x′ ⊕ x′′ and ∆y = y′ ⊕ y′′.

Other differences are in principle possible, however, none of them were found to
be better than the above ones.

Differentials of the g-function: Differentials of the g-function are investigated
in [9]. While in principle, it would be necessary to calculate the probabilities
of all 264 possible differentials (which is not feasible given standard equipment),
valuable insights can be gained by considering smaller versions of the g-functions.
This way, 8-, 10-, 12-, 14-, 16- and 18-bit g-functions were considered.

For the XOR difference operator, the investigation of reduced g-functions
revealed a simple structure of the most likely differential that persisted for all
sizes. The input differences were characterized by a block of ones of size of
approximately 3

4 of the word length5. Making the reasonable assumption that
these properties will be maintained in the 32-bit g-function, all input differences
constituted by single blocks of ones were considered. The largest probability,
and most likely the largest of all, found in this investigation was 2−11.57 for the
differential (0x007FFFFE, 0xFF001FFF).

For the subtraction modulus difference, no such clear structure was observed,
so the differentials with the largest probabilities could not be determined for
the 32-bit g-function. However, the probabilities scale nicely with word length.
Assuming that this scaling continues to 32-bit, the differential with the largest
probability is expected to be of the order 2−17. The probabilities are significantly
lower compared those available for the XOR difference operator.

5 Other structural properties are also present, they are described in [8] in more detail.



Higher order differentials were also briefly investigated, but due to the huge
complexity, only g-functions with very small word length could be examined.
This revealed that in order to obtain a differential with probability 1, the differ-
ential has to be of order equal to the word length, meaning that the non-linear
order of the g-function is maximal, for the small word length g-functions exam-
ined.

Differentials of the full cipher: The differentials of the full cipher were extensively
investigated in [8]. It was shown that any characteristic will involve at least 8
g-functions6.

From analyzing the transition matrices for smaller word length g-functions
it was found that after about four iterations of those, there resulted a steady
state distribution of matrix elements close to uniform for both the XOR and
subtraction modulus difference schemes. Using this and that the probability for
the best characteristic, Pmax, satisfies Pmax < 2−11.57·8 � 2−64, we do not expect
any exploitable differential.

For a very simplified version of Rabbit, without rotations and with the XOR
operation in the g-function replaced by an addition mod 232, higher order dif-
ferentials can be used to break the IV setup scheme even for a relatively large
number of iterations. If we consider another simplified version, with rotations,
third order differential still has a high probability for one round. However, for
more iterations, the security increases very quickly. Finally, using the XOR in
the g-function completely destroys the applicability of higher order differentials
based on modular subtraction and XOR.

3.8 Statistical Tests

The statistical tests on Rabbit were performed using the NIST Test Suite [15],
the DIEHARD battery of tests [12] and the ENT test [20]. Tests were performed
on the internal state as well as on the extracted output. Furthermore, we also
conducted various statistical tests on the key setup function. Finally, we per-
formed the same tests on a version of Rabbit where each state variable and
counter variable was reduced to 8 bit. No weaknesses were found in any of these
cases.

4 Performance

4.1 Software Performance

Encryption speeds for the specific processors were obtained by encrypting 8 kilo-
bytes of data stored in RAM and measuring the number of clock cycles passed.
For convenience, all 513 bits of the internal state are stored in an instance struc-
ture, occupying a total of 68 bytes. The presented memory requirements show
the amount of memory allocated on the stack related to the calling convention

6 probably it can be shown that 16 g-functions are the true minimum.



(function arguments, return address and saved registers) and for temporary data.
Memory for storing the key, instance, ciphertext and plaintext has not been in-
cluded. All performance results, code size and memory requirements are listed
in Table 1 below.

Intel Pentium Architecture: The performance was measured on a 1.0 GHz Pen-
tium III processor and on a 1.7 GHz Pentium 4 processor. The speed-optimized
version of Rabbit was programmed in assembly language (using MMX instruc-
tions) inlined in C and compiled using the Intel C++ 7.1 compiler. A memory-
optimized version can eliminate the need for memory, since the entire instance
structure and temporary data can fit into the CPU registers.

ARM7 Architecture: A speed optimized ARM implementation was compiled and
tested using ARM Developer Suite version 1.2 for ARM7TDMI. Performance was
measured using the integrated ARMulator.

MIPS 4Kc Architecture: An assembly language version of Rabbit has been writ-
ten for the MIPS 4Kc processor7. Development was done using The Embedded
Linux Development Kit (ELDK), which includes GNU cross-development tools.
Performance was measured on a 150 MHz processor running a Linux operating
system.

Processor Performance Code size Memory

Pentium III 3.7/278/253 440/617/720 40/36/44
Pentium 4 5.1/486/648 698/516/762 16/36/28
ARM7 9.6/610/624 368/436/408 48/80/80
MIPS 4Kc 10.9/749/749 892/856/816 40/32/32

Table 1. Performance (in clock cycles or clock cycles per byte), code size and memory
requirements (in bytes) for encryption / key setup / IV setup.

8-bit Processors: The simplicity and small size of Rabbit makes it suitable for
implementations on processors with limited resources such as 8-bit microcon-
trollers. Multiplying 32-bit integers is rather resource demanding using plain 32-
bit arithmetics. However, squaring involves only ten 8-bit multiplications which
reduces the workload by approximately a factor of two. Finally, the rotations in
the algorithm have been chosen to correspond to simple byte-swapping.

4.2 Hardware Estimates

ASIC Performance: The toughest operation from a hardware point of view is the
32-bit squaring. If no separate squaring unit is available, the nature of squaring

7 The MIPS 4Kc processor has a reduced instruction set compared to other MIPS 4K
series processors, which decreases performance.



allows for some simplification over an ordinary 32 × 32 multiplication. It can
be implemented as three 16 × 16 multiplications followed by addition. Being
the most complex part of the algorithm, it determines the overall speed and
contributes significantly to the gate count.

The 8 internal state and counter words can be computed using between
1 and 8 parallel pipelines. Estimates for different versions are given in table
2, giving gate count, die area and performance on a .18 micron technology.
If greater speed is needed and if the gate count is of less importance, more
advanced multiplication methods can be used. The gate count and die area
numbers include key and IV setup.

Pipelines Gate count Die area Performance

1 28K 0.32 mm2 3.7 GBit/s
2 35K 0.40 mm2 6.2 GBit/s
4 57K 0.66 mm2 9.3 GBit/s
8 100K 1.16 mm2 12.4 GBit/s

Table 2. Hardware estimates for Rabbit on .18 micron technology.

FPGA Performance: When implementing Rabbit in an FPGA, the challenges
will be similar to those in an ASIC implementation. Again the squaring opera-
tion will be the most complex element. Several FPGA families have dedicated
multiplication units available (e.g., Xilinx Spartan 3 or Altera Cyclone II). In
these architectures the latencies of the multiplier units are given to be 2.4 and
4.0 ns respectively. Based on a 2-pipeline design using 6 muliplier units, this
will give us decryption performance of 8.9 Gbit/s and 5.3 Gbit/s respectively.
If more multipliers are available, the number of pipelines can be increased, and
throughputs of 17.8 Gbit/s and 10.7 Gbit/s will be achievable.

5 Conclusion

The stream cipher Rabbit was first presented at FSE 2003 [3], and no attacks
against it have been published until now. With a measured encryption/decryption
speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also
provide very high performance. In this paper, we gave a concise description of
the Rabbit design and some of the cryptanalytic results available.

Acknowledgements

The authors would like to thank Thomas Pedersen, Ove Scavenius, Jesper Chris-
tiansen, and Thomas Christensen for their contributions to the development,
cryptanalysis, and implementation of the cipher Rabbit. In addition, we would



like to thank Vincent Rijmen for several ideas and suggestions, and Ivan Damgaard
and Tomas Bohr for many helpful inputs.

References

1. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory.
In D. Boneh, editor, Proc. Crypto 2003, volume 2729 of LNCS, pages 162–175.
Springer, 2003.

2. J.-P. Aumasson. On a bias of Rabbit. In Proc. SASC 2007. available from
http://www.ecrypt.eu.org/stream/papersdir/2007/033.pdf.

3. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius.
Rabbit: A new high-performance stream cipher. In T. Johansson, editor, Proc.

Fast Software Encryption 2003, volume 2887 of LNCS, pages 307–329. Springer,
2003.

4. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, Proc. Crypto 2003, volume 2729 of LNCS, pages 176–194.
Springer, 2003.

5. N. Courtois. Higher order correlation attacks, XL algorithm and cryptoanalysis
of toyocrypt. In P.J. Lee and C.H. Lim, editors, Proc. Information Security and

Cryptology 2002, volume 2587 of LNCS, pages 182–199. Springer, 2003.

6. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In E. Biham, editor, Proc. of Eurocrypt 2003, volume 2656 of LNCS, pages
345–359. Springer, 2003.

7. N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Y. Zheng, editor, Proc. Asiacrypt 2002, volume 2501 of
LNCS, pages 267–287. Springer, 2003.

8. Cryptico A/S. Algebraic analysis of Rabbit.
http://www.cryptico.com, 2003. white paper.

9. Cryptico A/S. Differential properties of the g-function.
http://www.cryptico.com, 2003. white paper.

10. Cryptico A/S. Security analysis of the IV-setup for Rabbit.
http://www.cryptico.com, 2003. white paper.

11. J. Daemen. Cipher and hash function design strategies based on linear and differ-

ential cryptanalysis. PhD thesis, KU Leuven, March 1995.

12. G. Masaglia. A battery of tests for random number generators.
http://stat.fsu.edu/˜geo/diehard.html, 1996.

13. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Proc. Eurocrypt ’93, volume 765 of LNCS, pages 386–397. Springer, 1993.

14. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In
C. Günther, editor, Proc. Eurocrypt ’88, volume 330 of LNCS, pages 301–314.
Springer, 1988.

15. National Institute of Standards and Technology. A statistical test suite
for the validation of random number generators and pseudo random number
generators for cryptographic applications. NIST Special Publication 800-22,
http://csrc.nist.gov/rng, 2001.

16. V. Rijmen. Analysis of Rabbit. available at
http://www.cryptico.com/Files/filer/security report.pdf, Sept. 2003.

17. R. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.



18. O. Scavenius, M. Boesgaard, T. Pedersen, J. Christiansen, and V. Rijmen. Periodic
properties of counter assisted stream cipher. In T. Okamoto, editor, Proc. CT-RSA

2004, volume 2964 of LNCS, pages 39–53. Springer, 2004.
19. A. Shamir and B. Tsaban. Guaranteeing the diversity of number generators. In-

formation and Computation, 171(2):350–363, 2001.
20. J. Walker. A pseudorandom number sequence test program.

http://www.fourmilab.ch/random, 1998.


