
Concrete Security for Entity Recognition:
The Jane Doe Protocol

Stefan Lucks1, Erik Zenner2, André Weimerskirch3, and Dirk Westhoff4

1 Bauhaus-Universität Weimar, Germany 〈http://medsec.medien.uni-weimar.de/〉
2 Technical University of Denmark 〈http://www.erikzenner.name/〉

3 escrypt Inc., USA 〈http://weimerskirch.org/〉
4 NEC Europe Ltd 〈Dirk.Westhoff@nw.neclab.eu〉

Abstract. Entity recognition does not ask whether the message is from
some entity X, just whether a message is from the same entity as a pre-
vious message. This turns turns out to be very useful for low-end devices.
The current paper proposes a new protocol – the “Jane Doe Protocol” –,
and provides a formal proof of its concrete security. The protocol neither
employs asymmetric cryptography, nor a trusted third party, nor any
key pre-distribution. It is suitable for light-weight cryptographic devices
such as sensor network motes and RFID tags.

1 Introduction

Consider the following story: Two strangers meet at a party and make a bet.
They introduce themselves as Jane and John Doe, which may or may not be
their real names. Some days later, however, it turns out that Jane is the winner,
and John receives a message: “John, please transfer the prize to bank account
[. . . ] Thank you. Jane.”. How does John know that this message actually has
been sent from that person, who had called herself “Jane” at that party? In
other words, how does John recognise Jane – or a message from her?

Below, we will use the names Alice and Bob instead of Jane and John Doe
for sender and receiver. As the protocol goal is about entity recognition, “real”
names are unimportant. Alice and Bob are technical devices communicating in
a hostile environment. Recognising each other would be easy if they could use
unique identities and digital signatures: Initially, Alice would send Bob her public
key. Later, Alice would sign all the messages she sends to Bob, and Bob would
verify these signatures. But digital signatures are computationally expensive,
and may seem an “overkill” to the problem at hand.

In this paper, we present the Jane Doe protocol, a light-weight solution
to entity recognition using only symmetric primitives (namely, message authen-
tication codes). Even low-end devices, which are too slow for digital signatures
or the like, can run our protocol. The protocol does not depend on any trusted
third party. Neither does it require a pre-established common secret key. It runs
efficiently enough for real-time applications. In addition, it is interactive and
provides information about the freshness and timeliness of messages.



Our research is motivated by the emergence of extremely low-power and low-
cost devices such as sensor network motes and RFID tags. The continued desire
to make these devices smaller at an attractive price offsets the technological
advancements of increasing computational power. While implementing digital
signatures and public-key techniques on such devices is technologically feasible,
it is a hard burden from an economic viewpoint. Also, such devices are often used
in networks where one can neither assume availability of a trusted third party,
nor availability of pre-deployed secret or authentic information, and with a dy-
namic network topology. Another motivation is the question to what degree one
can imitate the functionality of public-key cryptography and digital signatures
by just using some simple primitives from symmetric cryptography. The Jane
Doe protocol turns out to be as powerful as the common two step protocol for
authenticating messages, consisting of a non-authenticated Diffie-Hellman key
agreement at initialisation time followed by MAC authenticated messages.

Previous Work: The security goal of entity recognition has independently been
proposed by a couple of different authors under different names [2, 18, 16, 10, 8].

An early protocol to actually address entity recognition was the Resurrect-
ing Duckling protocol [17]. As it requires the exchange of a secret key in the
initialisation phase, it does meet our security requirements. The Guy Fawkes
protocol by [1] is more suitable for entity recognition, but it implicitly assumes
Alice to know when Bob has seen her commitment ai. While this may be the
case in the original use case (Guy Fawkes would publish his commitments in
a newspaper), an explicit confirmation of receipt may be desirable in most ap-
plication contexts. The Remote User Authentication protocol [14] uses a
message authentication code (MAC) and a cut-and-choose approach, which is
much more demanding than our protocol. In [15], messages are authenticated
using MACs, with a symmetric key being exchanged using Diffie-Hellman
key exchange at protocol start. The problem here is that the key exchange
requires public-key operations, which are too onerous for low-end systems. In
the full paper [13], we provide a rough comparison of this approach with our
proposal. The zero-common-knowledge protocol [18] from SAC 2003 uses
hash chains, like our protocol, but turned out to be flawed [12, 13].

2 Scenario Description

Sending messages: Alice is the sender of messages, Bob the receiver. All protocols
start with an initialisation phase, where Alice and Bob for the first time
contact each other and exchange some initial material. Later, messages are sent
from Alice to Bob in distinct time frames, which we denote as epochs. There
can be at most n such epochs. Each such epoch i consists of four basic steps:

1. Alice receives some external data xi, the origin of which lies outside the
scope of the protocol (e.g. a measurement from a sensor).

2. Alice authenticates and sends the message to Bob. Formally, we write Com-
mitMessage(xi,i).



3. Bob sends a confirmation that he received some data, supposedly from Alice.
4. Alice opens the commitment and proves that it was really her who send the

message. We write AcceptMessage(xi, i) if Bob believes the message xi to
be authentic and fresh in epoch i.

Adversary capabilities: The well-known Dolev-Yao model [7] assumes that Eve
is in full control over the connection between Alice and Bob, i.e. she is an active
adversary. In particular, she can

– read all messages sent from Alice or from Bob,
– modify messages, delay them or send them multiple times to Alice, Bob, or

to both of them,
– and send messages generated by herself to Alice or Bob or both.

This is considered as reasonable pessimism: Over-estimating the adversary is not
as bad as under-estimating her capabilities. However, e.g. Gollmann [9] argues
that novel applications may need more specific models. In our case, we make
the special assumption that during the initialisation phase, Eve behaves like a
passive adversary. She can read the messages between Alice and Bob (which
precludes any kind of secret key exchange), but she relays them faithfully. Note
that this is a weakening of the usual assumption that Alice and Bob can use a
protected communication channel for initialisation, i.e. our scenario requires less
external protection than most other proposals.

In typical application scenarios, Eve may even be able to extract secret data
inside the devices by tampering, in addition to controlling the network. Our
protocol does not protect against this kind of threat. If this threat is relevant for
the application at hand, and if it can not be mitigated by using tamper-resistant
hardware, then additional protection measures (like introducing redundancy and
using secure multi-party computation algorithms) have to be introduced.

Adversary goal: Driven by reasonable pessimism as before, we assume that Eve
aims for an existential forgery in a chosen message scenario:

– Eve may have some influence on xi. Thus, for purposes of security analysis,
we allow her to choose messages xi which Alice will authenticate and send,
i.e. CommitMessage(xi,i).

– She succeeds if Bob accepts any message x′ 6= xi as authentic, i.e. AcceptMes-
sage(x′, i).

At the beginning of the protocol, Alice and Bob choose initial random values
a0 resp. b0. From then on, Alice and Bob act as strictly deterministic machines.
When receiving a message, Alice and Bob update their internal state and send
a response, if necessary. Eve is a probabilistic machine with independent con-
nections to Alice and to Bob. In the context of this paper, the actual choice of
a machine model is not important – any reasonable machine model will do.

We require the initial random values (=keys) a0 and b0 to be chosen inde-
pendently from the keys for other sessions. To this regard, our setting is much
simpler than any communication scenario where the same key material can be
used in more than one session (see e.g. [4, 3]).



Limitation: We assume that the number of messages to be authenticated is
known in advance, or a reasonable upper bound is known. During the initiali-
sation phase, both Alice and Bob commit to the endpoint of a hash chain. The
length of this hash chain bounds the number of messages to be authenticated.
This limits of our approach, compared to other solutions employing public-key
cryptography. Those, however, may be less efficient than our scheme, [13].

Reliability: Since Eve has full control over the connection between Alice and Bob,
denial of service attacks are trivial for Eve. In addition, if the communication
channel itself is unreliable, messages may be lost or faulty messages may be
received even without the active involvement of a malicious adversary. Such
problems can not be solved at cryptographical level, but have to be managed
outside of the protocol. But the following reliability properties can be guaranteed:

Soundness: If the network is reliable and Eve behaves like a passive wire, the
protocol works well: Bob accepts each message xi Alice has committed to.

Recoverability: If Eve suppresses or modifies some messages, or creates some
messages of her own, Bob may refuse to accept a message xi Alice has com-
mitted to. However, once Eve begins again to honestly transmit all messages,
like a passive wire, the soundness with respect to new messages is regained.

3 The Jane Doe Protocol

In this section, we describe the Jane Doe protocol to solve the entity recognition
problem without using public-key cryptography. We write s for the size of a
symmetric key. A second security parameter is the tag size c ≤ s for message
authentication. (Typically: s ≥ 80 and c ≥ 32.) We use two functions, a MAC
m : {0, 1}s × {0, 1}∗ → {0, 1}c and a one-way function h : {0, 1}s → {0, 1}s. (In
Section 4, we will describe how to derive both m and h from a single MAC.) We
write x ∈r {0, 1}s to indicate a random s-bit string x, uniformly distributed.

Initialisation phase: For initialisation, Alice chooses a0 ∈r {0, 1}s and generates
a hash chain a1 := h(a0), . . . , an := h(an−1). Similarly, Bob chooses b0 ∈r {0, 1}s
and generates b1 := h(b0), . . . , bn := h(bn−1). When running the protocol, both
Alice and Bob learn some values bi resp. ai from the other’s hash chain. If
Alice accepts bi as authentic, we write AcceptKey(bi). Similarly for Bob and
AcceptKey(ai). The initialisation phase, where Eve can read the messages but
relays them faithfully, consists of two messages:

1. Alice → Bob: an. (Thus: AcceptKey(an).)
2. Bob → Alice: bn. (Thus: AcceptKey(bn).)

Message authentication: We split the protocol up into n epochs, plus the ini-
tialisation phase. The epochs are denoted by n− 1, . . . , 0 (in that order). Each
epoch allows Alice to send one authenticated message1, and Bob to receive and
verify it. The internal state of each Alice and Bob consists of
1 Several messages can be sent per epoch. For ease of presentation, we combine them.



– an epoch counter i,
– the most recent value from the other’s hash chain, i.e., bi+1 for Alice, and
ai+1 for Bob (we write AcceptKey(bi+1) and AcceptKey(ai+1)), and

– a one-bit flag, to select between program states A0 and A1 for Alice resp.
B0 and B1 for Bob.

Also, both Alice and Bob store the root a0 resp. b0 of their own hash chain.2

This value does not change during the execution of the protocol. Note that after
the initial phase, and before the first epoch n − 1, Alice’s state is i = n − 1,
AcceptKey(bn), and A0, and Bob’s is i = n − 1, AcceptKey(an), and B0. One
epoch i can be described as follows:

A0 (Alice’s initial program state)
Wait for xi (from the outside), then CommitMessage(xi,i):
1. compute di = m(ai, xi) (using ai as the key to authenticate xi);
2. send (di, xi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
1. if h(b′) = bi+1

then bi := b′; AcceptKey(bi); send ai; set i := i− 1; goto A0
else goto A1.

B0 (Bob’s initial program state)
Wait for a message (d′, x′) (supposedly from Alice), then
1. send bi and goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
1. if h(a′) = ai+1 then

(a) ai := a′; AcceptKey(ai);
(b) if m(ai, x

′) = d′

then xi := x′; AcceptMessage(xi,i)
(else do not accept any message in epoch i);

(c) set i := i− 1; goto B0
else goto B1

Figure 1 gives a simplified view on the protocol.

Reliability: The following reliability properties are met:

Soundness: The protocol is sound: If all messages are faithfully relayed, Alice
commits to the message xi in the beginning of epoch i and Bob accepts xi

at the end of the same epoch.
Recoverability: Repeating old messages cannot harm security – Eve may know

them anyway. We thus allow Alice to re-send ai+1 and (xi, di) if she is in
state A1 and has been waiting too long for the value bi from Bob. Similarly,
if Bob is in state B1 and has been waiting too long for ai, Bob sends the
value bi again. This allows our protocol to recover. On the other hand, if
Bob receives a faulty (x′, d′) 6= (xi, di), he will refuse to accept any message
in epoch i. Recovering means that soundness can be restored in epoch i− 1.

2 Alice can either store a0 and compute the ai on demand by making i calls to h, or
store all the ai using n units of memory. Her third option is to implement a time-
storage trade-off, requiring only about log2 n units of memory and log2

√
n calls to

h [6]. Similarly for Bob and the bi.



d := m(a , x )iii

else wait for new a i

a i

i(x , i)

i(b )

(a )i

(x , i)i

ii

ib 

x , d 

if h(b )=b 
then AcceptKey

i i+1

else wait for new ib if ih(a )=a i+1
then AcceptKey

x i
CommitMessage

if m(a , x ) = d i i i
then AcceptMessage

Alice Bob

Fig. 1. Simplified description of one epoch of the protocol

4 Security

4.1 Building Blocks and Assumptions

The main cryptographic building block in this paper is a MAC

m∗ : {0, 1}s × {0, 1}∗ → {0, 1}s

We fix some constant message const and define the two functions m and h we
actually use in the protocol

h : {0, 1}s → {0, 1}s, h(k) = m∗(k, const), and

m : {0, 1}s × {0, 1}∗ → {0, 1}c, m(k, x) = truncate-to-c-bit(m∗(k, x)).

In the case of m, a restriction is x 6= const. If neccessary, we we can, e.g., define
const as a single zero-bit, and prepend a single one-bit to every message x.

Security against adaptive chosen message attacks has been established as a
standard requirement for MACs:

Assumption 1 It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m∗. I.e., the
adversary is given access to an authentication oracle, computing ti = m(y, xi)
for the adversary, where y ∈r {0, 1}s is secret and the adversary is allowed to
choose arbitrary messages xi. “Adaptive” means that the adversary is allowed to
choose xi after having seen ti−1. The adversary wins if she can produce a pair
(x′, t′) with m(y, x′) = t′, without previously asking the oracle for m(y, x′).

Unfortunately, this standard assumption is not quite sufficient for our purposes.
Below, we will not make use of assumption 1 at all, but instead, define two similar
assumptions. Firstly, we use m instead of m∗ as a MAC, i.e., the truncation of
m∗ to c ≤ s bit. The security of m does not follow from the security of m∗. So
we need to make the same assumption for m instead of m∗:

Assumption 2 It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m.



Furthermore, we use h to build a hash chain, which implies that h must be
one-way. It may be surprising, but m∗ being secure against existential forgery
is not sufficient for the one-wayness of h = m∗(·, const). If, given k∗ = h(k) =
m∗(k, const), the adversary can find the secret k, then she can forge messages.
But the adversary could just as well find some value k′ 6= k with k∗ = h(k′) =
m∗(k′, const) without necessarily being able to to generate existential forgeries.
We thus need to exclude this case:

Assumption 3 The function m∗ is one-way. I.e., given a random k ∈ {0, 1}s,
and a message const, it is infeasible to find any k′ ∈ {0, 1}s with m∗(k, const) =
m∗(k′, const).

Note that inverting m∗ (i.e., breaking the one-wayness of h) would either al-
low us to find a secret key and thus to forge messages, or provide a 2nd preimage,
i.e., a value k′ 6= k with h(k) = h(k′). Indeed, for our formal proof of security
we could replace assumption 3 by assuming 2nd preimage resistance. The proof
would be slightly more complicated, though.

4.2 Proving Security for Epoch 0

Theorem 1. If the adversary can efficiently break epoch 0 of the protocol, she
can efficiently break either assumption 2 or assumption 3.
Concrete security. If she can break the protocol in time t with probability p, she
can either invert h or forge a message for m in time ≤ t + 2t∗ with probability
p/2. Here, t∗ is the time to evaluate either h or m, which ultimately boils down
to the time for evaluating m∗.

Proof. Eve can send the following messages (see also left side of Figure 2):

(1) If Alice’s program state is A0: x0 to Alice.
Alice responds d0 := m(a0, x0) (and x0, but x0 is known to Eve, anyway).

(2) If Bob’s program state is B0: (x′, d′) to Bob – with x′ 6= x0.
(3) If Alice’s program state is A1: b′ to Alice – with h(b′) = b1.
(4) If Bob’s program state is B1: a′ to Bob – with h(a′) = a1.

Remember that she is successful if she gets Bob to AcceptMessage(x′,i) for a
message x′ that Alice has not send in epoch i.

Note that (3)-like messages b′ with h(b′) 6= b1 to Alice do not affect Alice’s
state; Alice ignores them. Since Eve can check h(b′) = b1 on her own, we assume
w.l.o.g. Eve not to send any message b′ with h(b′) 6= b1 to Alice. Similarly, for
(4)-like messages, we assume, Eve not to send any a′ with h(a′) 6= a1 to Bob.

In order to successfully attack, Eve must send exactly one message (1) to
Alice (to ensure CommitMessage(x0, 0)) and both messages (2) and (4) to Bob
(for AcceptMessage(x′, 0)). Eve may send at most one message (3) to Alice.
W.l.o.g., we assume Eve to send exactly one message (3). (If she wins her attack
game without sending message (3), she has sent message (2) and did learn b0
from Bob. She can always send a final message (3) with b′ = b0.)

While (1,2,3,4) is the protocol-defined “natural” order for sending the mes-
sages, Eve is not bound to this order. There are some restrictions though:



Left: The four types of messages Right: Eve, connected to some game

Fig. 2. Eve in epoch i

– Message (1) must be sent before message (3). Until she knows and has com-
mitted to x0, Alice wouldn’t even listen to message (3).

– Also, Bob wouldn’t listen to (4) before having received (2).

In the context of this proof, we just need to distinguish between two cases, which
we represent by two games: Either message (2) is sent before message (3), or the
other way. Consider disconnecting Eve from Alice and Bob, and connecting her
with either of two games (cf. right side of Figure 2). If we win such a game, we
can either invert h or forge messages. We will show that Eve cannot distinguish
her participation in such a game from the “real” attack against the protocol and
show that a successful attack by Eve is essentially the same as us winning one of
our games. So at the end, if Eve can feasibly attack the protocol, we can feasibly
invert h(·) = m(·, const) or forge messages for m∗. The games are the following:

1st game (inverting h): Given k∗ = h(k) = m∗(k, 0), for a uniformly distributed
random k, find some k′ with m∗(k′, 0) = k∗.

– Randomly choose a0, compute a1 := h(a0).
– If Eve sends message
• (1), the value x0: compute and respond d0 := m(a0, x0).
• (2): abort the game.
• (4): Report an error! (Message (2) must be sent before message (4), and

this algorithm aborts after message (2).)
– When Eve sends (3), the value b′: print k′ := b′ and stop.

The values provided to Eve during the 1st game are distributed exactly as in
the case of the real attack game. Namely, a0 and b0 are independent uniformly
distributed random values, and all the other values are derived from a0 and b0.
Note that if Eve sends message (3) before message (2), the game succeeds; else
it doesn’t. To compute a1, we call h. To compute d0, we call m. Thus, we need
two function calls. As Eve herself runs in time t, the game takes time t+ 2t∗.

2nd game (existential forgery for m): Consider an unknown random y, known
y∗ = h(y), and the ability to ask an oracle for m(y, ·). Proceed as follows.

– Set a1 := y∗; randomly choose b0; compute b1 := h(b0).



– If Eve sends message
• (1), the value x0: ask the oracle for the response d0 = m(y, x0).
• (3): abort the game.
• (4): Report an error!

– When Eve sends (2), the pair (x′, d′): print (x′, d′) and stop.

Eve’s attack succeeds if and only if (x′, d′) is an existential forgery.
Similarly to above, the distribution of values provided during the game is

identical to the real attack game. The only computation during the game is the
one for b1 := h(b0), so the game needs time t+ t∗ ≤ t+ 2t∗.

Completing the proof: The 1st game is the counterpart of the second game: one
succeeds if message (2) is sent before message (3), the other one, if message (3) is
sent before message (2). Eve doesn’t know which game we play – or rather, that
we are playing games with her at all, instead of mounting the “real” attack. So
Eve still succeeds with probability p. If we randomly choose the game we play,
we succeed with p/2. Neither game takes more than time t+ 2t∗. ut

4.3 Security in any Epoch i

At a first look, it may seem that the security proof for epoch 0 is also valid for
epochs i > 0. But in epoch 0, the keys for the MAC m∗ are uniformly distributed
random values a0 and b0 in {0, 1}s, while later, we use ai and bi:

– Our security assumptions for m∗ require uniformly distributed random keys.
– Our security assumptions for m∗ do not ensure the uniform distribution of

the output values ai = h(ai−1) = m∗(ai−1, 0) and bi = . . .

Now m∗ could be defined such that the one-way function h(x) = m∗(x, 0) per-
mutes over {0, 1}s. This would solve our problem, but restrict our choices m∗

too much. In practice, however, most cryptographic MACs can reasonably be
assumed to behave pseudorandomly. Thus, we make an additional assumption.

Let u ∈r {0, 1}s be a random variable chosen according to the uniform
distribution. Let w be a random variable chosen by applying the function h to
a uniformly distributed input, i.e., v ∈r {0, 1}s, and w := h(v). Let A be a
distinguishing adversary for u and w. The advantage AdvA of A in distinguishing
u from w is defined in the usual way:

AdvA =
∣∣Pr[A(u) = 1]− Pr[A(w) = 1]

∣∣
Assumption 4 No efficient adversary A can feasibly distinguish the distribu-
tion of the random variable w = h(v), v ∈r {0, 1}s, from the distribution of
u ∈r {0, 1}s. I.e., for all efficient A the advantage AdvA is negligible.

Recall that h is defined by h(·) = m∗(·, const). For typical MACs m∗, this
assumption is highly plausible.

We use assumption 4 to prove the pseudorandomness of values a1 := h(a0),
. . . , an := h(an−1) for a random a0, along an entire hash chain.



Lemma 1. If, for any i ∈ {1, 2, . . . , n− 1}, the adversary can efficiently distin-
guish ai from ai−1, she can also distinguish a1 from a0, thus breaking Assump-
tion 4.
Concrete security. Let i ∈ {1, 2, . . . , n− 1} be given. If the adversary can distin-
guish ai from ai−1 in time t with an advantage α, she can distinguish a1 from
a0 im time at most t + (i − 1) ∗ t∗ with the same advantage α. Here, t∗ is the
time for evaluating h.

Proof. Let a value r0 be given, either distributed like a0 or like a1. Compute
r1 := h(r0) . . . , ri−1 := h(ri−2). Now, ri−1 is either distributed like ai−1, or like
ai, and we can distinguish between both options for ri−1 in the same time and
with the same advantage as for ai−1 and ai. Computing ri−1 takes at most i− 1
calls to h. ut

One more issue has to be taken into account. In the single-epoch case, we
argued that finding 2nd preimages, i.e., values a′ 6= ai with h(a′) = h(ai) = ai+1

when given ai, is infeasible under our assumptions. But when dealing with more
than one epoch, Eve might possibly trick Alice into committing to some new
message xi−1 and sending di := m(ai−1, xi−1) – even before Bob has seen ai

(see below). In contrast to an ordinary 2nd preimage attack, Eve now does not
just know ai, but she also has some additional information about ai−1. Driven
by the usual reasonable pessimism, we even assume Eve to know ai−1 itself. We
consider finding an a′ 6= ai with h(a′) = h(ai) = ai+1 as a guided 2nd preimage.
Theoretically, such guided 2nd preimages might be possible, even under all the
assumptions we made so far. Thus, we make one additional assumption.

Assumption 5 It is infeasible to find guided 2nd preimages for h. I.e., given
a0 ∈r {0, 1}s, a1 = h(a0), and a2 = h(a1), it is infeasible to find any a′ 6= a1

with h(a′) = a2.

Recall that the adversary wins in epoch i if she can make Alice to Com-
mitMessage(xi,i) and Bob to AcceptMessage(x′, i) for any x′ 6= xi.

Theorem 2. If there is any epoch i ∈ {0, . . . , n−1} in which the adversary can
feasibly win with significant probability, at least one of the assumptions 2, 3, 4,
or 5 is false.
Concrete security. If she can win in epoch i, in time t with probability p, she
can either invert h, forge a message for m, or generate a guided 2nd preimage
for h in time ≤ t+ 2t∗ with probability p/4. Or she can distinguish (ai, bi) from
(ai−1, bi−1) with advantage p/4. Here, t∗ is the time for calling either h or m,
which ultimately boils down to calling m∗.

Proof. We say, the protocol in a “synchronised state”, if there is an i ∈ {0, . . . , n}
such that Bob knows ai but not ai−1, while Alice knows bi but not bi−1. I.e.,
the protocol is in a synchronised state if both Alice and Bob are in the same
epoch i− 1. After the initialisation, both are in epoch n− 1, hence the protocol
is in a synchronised state.



For the proof, we need to analyse independently how Eve can benefit from
non-synchronised states, and how she can benefit from synchronised states.

Non-synchronised states: Consider Alice and Bob to be in epoch i, thus the
protocol state is synchronised. Alice will not move forward into epoch i − 1
without having seen bi with h(bi) = bi+1. If Eve could provide such a bi without
obtaining it from Bob, she could win in epoch i anyway. Thus we can safely
assume that Alice does not move forward before Bob sends bi. For the same
reason, we may assume Bob not moving forward to epoch i− 1 without having
seen ai from Alice. Bob only sends bi after having seen ai from Alice. Thus, Bob
can never be ahead of Alice. Temporarily, Alice can be ahead of Bob – especially
if Eve does not forward ai to Bob. This would give a protocol state with Alice
living in epoch i − 1 while Bob still lives in epoch i. But without having seen
bi−1, Alice cannot move ahead into epoch i−2, and Bob does not send this while
he is still in epoch i.

At this point, Eve has but two options to proceed. One is to forward ai to
Bob, thus creating a new synchronised state. The second is to choose a message
xi−1 and send it to Alice, who responds with the authentication tag di−1 =
m(ai−2, xi−1). If, after sending xi−1 to Alice, Eve sends the value ai to Bob
which she has seen before, there is no gain for Eve. The order of messages has
changed, but the messages are the same, anyway. To benefit from the second
option, Even has to send a value a′ 6= ai with h(a′) = h(ai) = ai+1 to Bob.
If Eve could find such a value a′, she could find guided 2nd preimages, thus
breaking assumption 5.

Synchronised states: Now consider both Alice and Bob being in some epoch i,
and Eve trying to win in this epoch. This part of the proof is done by induction.
We start with epoch 0. Recall that if both assumption 2 and assumption 3 hold,
the adversary cannot feasibly win in epoch 0.

Now assume that no efficient adversary can win in epoch epoch (i-1), but
there is an efficient algorithm to win epoch i with significant probability. Clearly,
we can use this algorithm to distinguish (ai−1, bi−1) from (ai−2, bi−1), thus break-
ing assumption 4.

Concrete security (sketch): This part is quite similar to the proof of theorem 1,
the single-epoch case. Instead of two different games, we need to define four:

1. One game to invert h (like the 1st game in the proof of theorem 1).
2. One game to forge messages for m (like the 2nd game above).
3. One game to generate guided 2nd preimages for h.
4. One game to distinguish (ai−1, bi−1) from (ai−2, bi−1).

If Eve wins, we succeed in at least one of the games. Which game we succeed in
depends on Eve’s behaviour. As we must commit to one game in advance (i.e.
before we know how Eve behaves), the probability of success decreases from p
(for Eve) to p/4 (for us). ut



5 Final Remarks and Conclusion

The Jane Doe protocol does not provide security against denial of service attacks.
I.e., if Eve sends a fake di in epoch i, Bob will send bi and then not accept the
“real” di Alice may later send.

Freshness means that a message has been committed to recently. In our case,
when Bob accepts message xi in epoch i, he can be sure that Alice (following the
protocol rules) did not commit to that message before she had seen and verified
Bob’s response bi+1 from the previous epoch. In this sense, our protocol ensures
the freshness of the messages authenticated.

The messages are “fresh” by belonging to the current epoch. But Eve is able
to stretch any epoch at her will. Assume, e.g., that Alice commits to a message
mi =“I am well”, but Eve delays forwarding di = m(ai, “all is well”) to Bob.
Later, Alice would need to raise an alarm, but instead Eve forwards di to Bob
who sends bi, which Eve immediately forwards to Alice. The protocol logic would
require Alice to reply ai, thus confirming that she is well. Instead of confirming
such an outdated message, Alice could simply terminate communication with
Bob. Eve has the power to cut the communication between Alice and Bob,
anyway, and Bob will eventually notice that Alice doesn’t respond any more.

Assuming some underlying primitive (from which we derive m∗) to behave
like a random oracle is theoretically sound and would allow us to greatly simplify
our security proofs. But in practice, cryptographic primitives never behave like
random oracles. Results in the random oracle model hardly provide any guideline
for the choice of a good primitive. Our very specific standard model assumptions
on m∗ are meant to serve as such a guideline.

Note that we have two functions, a message authentication code (MAC) m
and a hash function h, both of which are derived from another MAC m∗. In
principle, one could choose m and h independently from each other, without
deriving them from the same underlying primitive, as has been suggested in
[12]. Under appropriate assumptions, one can still prove the security of the Jane
Doe protocol. This requires more complex and less natural assumtions than those
made here. Even if m is a secure MAC and h is modelled as a random oracle, the
protocol may actually be insecure[13]. Deriving both m and h from one single
primitive m∗ thus saves us from some difficult technical issues.

Furthermore, we believe that deriving both h and m from the same under-
lying primitive is natural and meets practical necessities very well.

Conclusions: Entity recognition is an adopted security goal especially useful
for constrained pervasive applications. The Jane Doe protocol provides entity
recognition. The protocol is efficient, runs on on very low-end devices, and is
provably secure. We believe this to be a significant step into the direction of
provably secure protocols for low-end devices.



References

1. R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C. Manifavas, and R. Needham,
“A New Family of Authentication Protocols”, ACM Operating Systems Review,
vol. 32, 1998.

2. J. Arkko, P. Nikander, “Weak Authentication: How to Authenticate Unknown
Principals without Trusted Parties”, Proc. Security Protocols Workshop 2002.

3. M. Bellare, P. Rogaway, “Entity Authentication and Key Distribution”, Proc.
Crypto 1993, Springer LNCS vol. 773, 1994.

4. R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, M. Yung, “Sys-
tematic design of two-party authentication protocols”, Proc. Crypto 1991, Springer
LNCS vol. 576, 1992.

5. P. Buonadonna, J. Hill, D. Culler, “Active Message Communication for Tiny Net-
worked Sensors”, Proc. 20th Joint Conference of the IEEE Computer and Com-
munications Societies, IEEE, 2001.

6. D. Coppersmith, M. Jakobsson, “ Almost Optimal Hash Sequence Traversal”, Proc.
Financial Cryptography 2002, Springer LNCS vol. 2357, 2004.

7. D. Dolev, A. Yao, “On the Security of Public Key Protocols”, IEEE Trans. Infor-
mation Theory, vol. 29(2), pp. 198-208, March 1983.

8. P. Dielsma, S. Mödersheim, L. Vigano, D. Basin, “Formalizing and Analyzing
Sender Invariance”, Formal Aspects in Security and Trust (FAST 2006).

9. D. Gollmann, “Protocol Design: Coming Down from the Cloud” (Invited Talk),
Workshop on RFID and Lightweight Crypto 2005, available from:
http://www.iaik.tugraz.at/research/krypto/events/

10. J. Hammell, A. Weimerskirch, J. Girao, and D. Westhoff, “Recognition in a Low-
Power Environment”, Proc. ICDCSW 2005, IEEE, 2005.

11. A. Hodjat, I. Verbauwhede. “The Energy Cost of Secrets in Ad-hoc Networks”.
IEEE Circuits and Systems workshop on wireless communications and networking,
IEEE, 2002.

12. S. Lucks, E. Zenner, A. Weimerskirch and D. Westhoff “Entity Recognition for
Sensor Network Motes”, Vol. 2, Proc. INFORMATIK 2005, pp. 145–149, LNI Vol.
P-68, ISBN 3-88579-379-0 (an early 5-page abstract of the current research).

13. S. Lucks, E. Zenner, A. Weimerskirch and D. Westhoff “Concrete Security for
Entity Recognition: The Jane Doe Protocol (Full Paper)”, eprint, full version of
the current paper.

14. C. Mitchell, “Remote User Authentication Using Public Information”, Proc. Cryp-
tography and Coding 2003, Springer LNCS vol. 2898, 2003.

15. S. Russell, “Fast Checking of Individual Certificate Revocation on Small Systems”,
Proc. 15th Annual Computer Security Application Conference, IEEE, 1999.

16. J.-M. Seigneur, S. Farrell, C. Jensen, E. Gray, and Y. Chen, “End-to-end trust
in pervasive computing starts with recognition”, Proc. SPC 2003, Springer LNCS
vol. 2802, 2004.

17. F. Stajano and R. Anderson, “The Resurrecting Duckling: Security Issues for Ad-
hoc Wireless Networks”, Proc. Security Protocols 1999, Springer LNCS vol. 1796,
1999.

18. A. Weimerskirch and D. Westhoff, “Zero Common-Knowledge Authentication for
Pervasive Networks”, Proc. SAC 2003, Springer LNCS vol. 3006, 2003.

19. A. Weimerskirch, D. Westhoff, S. Lucks, and E. Zenner, “Efficient Pairwise Authen-
tication Protocols for Sensor and Ad-hoc Networks”, Sensor Network Operations,
IEEE Press, 2004.


