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Abstract. In this paper, we describe a cache-timing attack against the
stream cipher HC-256, which is the strong version of eStream winner HC-
128. The attack is based on an abstract model of cache timing attacks
that can also be used for designing stream ciphers. From the observa-
tions made in our analysis, we derive a number of design principles for
hardening ciphers against cache timing attacks.
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1 Introduction

Cache timing attacks are a new class of side-channel attacks. They received
significant attention after being applied to the Advanced Encryption Standard
(AES) independently by Bernstein [1] and Osvik, Shamir, and Tromer [12, 13] in
20051. The idea is that in some settings, the adversary can obtain information
about the cache accesses of a legitimate party by measuring timings. Optimised
software implementations of the AES turned out to be particularly vulnerable
to this kind of attack.

The discovery was met with great interest. Subsequent research verified the
correctness of the findings [11, 10, 9, 15], improved the attack technically [14, 3,
8] or algorithmically [5], and devised and analysed countermeasures [6, 4, 16].

However, the focus of the attacks was on the AES, and the countermeasures
mainly targeted the implementation of cryptographic designs. In this paper, we
take a different approach: We discuss how cipher designers can make such attacks
more difficult. In order to demonstrate our approach, instead of considering a
block cipher like AES, we analyse the stream cipher HC-256.

1.1 Cache Timing Attacks

Cache timing attacks exploit that loading data into a CPU register is faster when
done from cache than from RAM. By measuring cache timings, an observer can
obtain information about the inner state of a cipher. In the following, we give a
simplified description of cache timing attacks; for a more complete description,
see e.g. [13, 9].
1 For prior work on cache timing attacks, see the references contained in [1] and [12].



Cache workings: The CPU cache of modern processors is organised into blocks
of s bytes. Correspondingly, RAM is considered to be (virtually) divided into
s-byte blocks. When loading data from RAM into a CPU register, the system
first checks whether the corresponding RAM block already lies in cache. If yes,
it is loaded directly from cache, which is very fast. If not, it is first loaded from
RAM to cache, which takes longer. Mapping from RAM to cache is typically by
a simple modulo operation, i.e. if the cache can hold n blocks and if the data lies
in RAM block a, then it is loaded into cache block a mod n. This means that
neighbouring data in RAM (e.g. tables) stays clustered in cache.

A simple attack: As an example, consider the prime-then-probe method pre-
sented in [13]. The adversary starts by filling all the cache with his own data.
Then the legitimate user U gets the read/write token. U loads the data required
for his own computations into cache, where it evicts the adversary’s data. When
the adversary reobtains the read/write token, he tries to reload his own data
from cache. For each cache block, if this takes long, it means that U has evicted
the corresponding data.

From this analysis, the adversary obtains a profile of cache blocks that have
been used by U . This profile is a noisy version of the cache blocks that have
been used for the encryption. By repeating the experiment a number of times,
a good approximation of the real cache access profile can be obtained.

Note that the adversary does not learn the data that was written in the cache
by U – he learns something about the addresses of the data that was used. In
the case of the AES, this corresponds to the indices of the S-box entries used for
encryption, which in turn can be used for an attack.

Practicality: Cache timing attacks require cache timing measurements of suffi-
cient precision. In addition, the experiment has to be repeated sufficiently often.
Obviously, these requirements are not always met. However, they are relevant in
shared server and in sandbox scenarios, and Bertoni et al. [3] show how to use
cache timings if the adversary has physical access to a device, making the attack
much more realistic.

Responsibility: Some researchers claim that defending against side-channel at-
tacks should be the responsibility of the implementer, not the cipher designer.
However, this view is not shared by everyone. As an example, the AES was
chosen partially due to its inherent resistance against side-channel attacks (see
e.g. Section 7 of [1]). The reason is that algorithms are designed only once, but
implemented many times on many platforms. Thus, if side-channel attacks can
be avoided in the design phase, implementation becomes easier, which seems
to be preferable. In order to emphasise the designer’s responsibility, we use a
simplified terminology in this paper: We say that a cipher can be “broken” in a
cache timing model if an unprotected implementation is vulnerable to a cache
timing attack.



2 The Stream Cipher HC-256

HC-256 was proposed by Wu in [17], and its reduced version HC-128 is part of
the eStream portfolio [7]. The cipher is based on two large, key-based tables (i.e.,
no fixed S-boxes) that change content over time. With each call to the keystream
generation function, the cipher updates one table entry and outputs one 32-bit
keystream word.

Notation: HC-256 requires a 256-bit key K and a 256-bit IV IV . It uses two
tables P and Q, which contain 1024 32-bit words each. Table entries are identified
by P [i] and Q[i].

In the following, ⊕ denotes xor, || concatenation (most significant bits first),
≫ a circular right shift, � addition modulo 232, and � subtraction modulo 210.

If X is a word, we denote by X(b..a) the bits b..a, where b > a. For all nota-
tions, the most significant bits are written to the left, while the least significant
bits are written to the right. Thus, we can write X = X(31..0).

Auxiliary Functions: The following auxiliary functions on 32-bit variables are
used:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x � 3)
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x � 10)

g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � Q[(x⊕ y)(9..0)]
g2(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) � P [(x⊕ y)(9..0)]

h1(x) = Q[00||x(7..0)] � Q[01||x(15..8)] � Q[10||x(23..16)] � Q[11||x(31..24)]
h2(x) = P [00||x(7..0)] � P [01||x(15..8)] � P [10||x(23..16)] � P [11||x(31..24)]

Key/IV Setup: For initialisation, the key is split into 32-bit words K[0], . . . ,K[7],
and the IV is split into 32-bit words IV [0], . . . , IV [7]. With the help of an auxil-
iary array W [0], . . . ,W [2559] and a global counter variable r, the algorithm can
be described as in Figure 1.

Keystream Generation: The r-th call to the Next() function updates one table
entry and produces one 32-bit output word zr. The function is described in
Figure 2. Note that r = 0 for the first output word.

3 Mapping Measurements to Inner State

3.1 Preliminaries

State-dependent table lookups: From a cache timing attack, the adversary learns
(part of) the table indices that were accessed by the encryption algorithm. How-
ever, most table lookups made by HC-256 depend on a public counter which is
known to the adversary anyway. The only exceptions are the state-dependent
table lookups within the functions g1 and h1 (leaking information about table
P ) as well as g2 and h2 (table Q).



Init(K, IV )
1. For i = 0, . . . , 7:
2. W [i] = K[i]
3. For i = 8, . . . , 15:
4. W [i] = IV [i− 8]
5. For i = 16, . . . , 2559:
6. W [i] = f2(W [i− 2]) � W [i− 7] � f1(W [i− 15]) � W [i− 16] � i
7. For j = 0, . . . , 1023:
8. P [j] = W [j + 512]
9. Q[j] = W [j + 1536]

10. Set r = −4096
10. Repeat 4096 times:
10. Next() (* Ignore the output *)

Fig. 1. Key/IV setup for HC-256

Next()
1. Set j = r mod 1024
2. If ((r mod 2048) ∈ {0, . . . , 1023}):
3. P [j] = P [j � 1024] � P [j � 10] � g1(P [j � 3], P [j � 1023])
4. zr = h1(P [j � 12])⊕ P [j]
5. Else:
6. Q[j] = Q[j � 1024] � Q[j � 10] � g2(Q[j � 3], Q[j � 1023])
7. zr = h2(Q[j � 12])⊕Q[j]
8. r = r + 1

Fig. 2. Keystream generation for HC-256

Observable index bits: Ideally, the adversary would learn the full table index
from each cache observation. In practice, however, the cache is organised in
blocks that store several RAM table entries. Thus, all the adversary can learn
from his measurements is the cache block containing the table entry.

In the following, we assume that the tables P and Q are perfectly aligned
with the cache blocks2. Thus, the tables themselves can be considered as being
split into blocks that have the same size as the cache blocks.

The cache block size is processor dependent and varies typically between
16 and 128 byte. In the following, we use a cache block size of 64 byte, since
it is currently particularly wide-spread (e.g. in Pentium 4 and Athlon). Since
tables P and Q have 1024 entries with an entry size of 4 byte each, each table
block contains 16 table entries, and each table consists of 64 blocks. Thus, by
measuring cache timings, the adversary learns index bits 4..9, but not 0..3.

Note that if the cache block size is smaller (larger) than 64 byte, he will
obtain more (less) information about the table entries.

2 If this is not the case, our attack becomes easier, since unaligned table entries leak
additional information about the inner state.



3.2 Keystream Generation vs. Key/IV Setup

The functions g1, g2, h1, and h2 are accessed both during keystream generation
and key/IV setup. However, during key/IV setup, all entries in the tables W , Q
and P are accessed at least once. Thus, the adversary will obtain no additional
information compared to the standard model.

Instead, we concentrate on the keystream generation phase, where we make
repeated measurements for each output block. This is modelled by giving the
adversary access to two oracles:

– Keystream(i): The adversary requests the cipher to return the i-th key-
stream block to him. The block length depends on the cipher design.

– SCT Keystream(i): The adversary obtains an unordered list of all cache
accesses made by Keystream(i).

A justification and generalisation of this model is given in Section 6.

3.3 Initial State Candidates

If the adversary calls the SCT Keystream(r) oracle, this corresponds to a call
to the Next() function. Consider such a call for a round r with (r mod 2048) ∈
{0, . . . , 1023}, i.e. code lines 3 and 4 are executed. From functions g1 and h1, he
observes either 4 or 5 accesses to table Q, as follows.

Function h1: In function h1, table Q is accessed at indices (00||P [j � 12](7..0)),
(01||P [j � 12](15..8)), (10||P [j � 12](23..16)), and (11||P [j � 12](31..24)). While in
general, the adversary does not know which table access belongs to which vari-
able, things are more obvious here. Each of the four 10-bit indices starts with a
unique 2-bit prefix and can thus be clearly assigned to one of the four variables.
Thus, if it were not for code line 3, the adversary could immediately determine
the upper half-bytes for P [j � 12].

Function g1: However, in the same function call, g1 accesses table Q at index
(P [j�3]⊕P [j�1023])(9..0). This index can have any of the prefixes 00, 01, 10, or
11. Thus, we can not distinguish it from one of the accesses by h1 which has the
same prefix (unless it accidentially uses the same cache block, which happens
with probability 1/16).

Concluding, for three of the four bytes in P [j � 12], we know precisely their
upper half-byte. For the fourth one, we normally have two candidates, which
we can not distinguish without additional information. In addition, for (P [j �
3]⊕ P [j � 1023]), we know exactly what the bits 9 and 8 are, and we have two
candidate assignments for bits 7..4.

Functions h2 and g2: Exactly the same observations hold for table P for rounds
r with (r mod 2048) ∈ {1024, . . . , 2047}.



4 Reconstructing the Full Inner State

4.1 Notation

Before considering several calls to the Next() function, we have to define a
unique notation for the table entries. Since the table is constantly updated, we
have to make it clear which of a succession of values in e.g. table cell P [12] we
mean.

To this end, for table P , we write Pu when we mean the u-th value that was
updated for this table, where P0 is updated in round r = 0. As an example, table
cell P [12] has the value P−1012 after initialisation, obtains value P12 in round
r = 12 and value P1036 in round r = 2060.

Similarly, for table Q, we write Qu when we mean the u-th value that was
updated for this table, where Q0 is updated in round r = 1024. As an example,
table cell Q[12] has the value Q−1012 after initialisation, obtains value Q12 in
round r = 1036 and value P1036 in round r = 3084.

The following table describes the the relationship between rounds and se-
quence words that are used for the attack.

Round Table P Table Q
0, . . . , 1023 P0, . . . , P1023 -

1024, . . . , 2047 - Q0, . . . , Q1023

2048, . . . , 3071 P1024, . . . , P2047 -
3072, . . . , 4095 - Q1024, . . . , Q2047

4096, . . . , 5119 P2048, . . . , P3071 -
5120, . . . , 6143 - Q2048, . . . , Q3071

6144, . . . , 7167 P3072, . . . , P4095 -
7168, . . . , 8191 - Q3072, . . . , Q4095

4.2 Step 1: Determining the Half-Bytes

The purpose of the first step is to uniquely identify the correct assignments to
the upper half-bytes of P1024, . . . , P3083 and Q1024, . . . , Q3071.

Measurement: By using the SCT Keystream() oracle for rounds

r = 25, . . . , 1023, r = 2048, . . . , 3071, r = 4096, . . . , 5119, r = 6144, . . . , 6176,

the adversary observes partial information about table entries as described in
Subsection 3.3. This gives him 2 candidate assignments for each of the following
lines:

From h1 From g1

P
(7..4)
13 P

(15..12)
13 P

(23..20)
13 P

(31..28)
13 P

(9..4)
22 ⊕ P

(9..4)
−998

P
(7..4)
14 P

(15..12)
14 P

(23..20)
14 P

(31..28)
14 P

(9..4)
23 ⊕ P

(9..4)
−997

. . . . . . . . . . . . . . .

P
(7..4)
3092 P

(15..12)
3092 P

(23..20)
3092 P

(31..28)
3092 P

(9..4)
3101 ⊕ P

(9..4)
2081



In particular, for the equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072, we have 2 candi-
dates for the bits 7..4 from g1. At the same time, from h1, we have 1 candidate
(with probability ≈ 3/4) or 2 candidates (with probability ≈ 1/4) for bits 7..4
of the corresponding values P13, . . . , P3092.

A simple consistency check: We will now try to figure out which of the two
candidates for each g1 equation is the correct one. First note that with probability
1/16 there is really only one candidate for this equation, namely if bits 7..4 are
the same as for h1. If this is not the case, there are three subcases:

1. For the corresponding h1 values, there is only 1 candidate each. In this case
(which happens with prob. ≈ 9/16), checking by xoring those h1 values will
always identify the correct candidate for the g1 value.

2. One of the h1 values has 1 candidate and one has 2 candidates. In this case
(which happens with prob. ≈ 6/16), there is only one wrong combination of
h1 candidates, and it is identical to the wrong g1 candidate with probability
1/16. Thus, the test identifies the wrong g1 candidate with probability 15/16.

3. Both h1 values have 2 candidates. In this case (which happens with prob.
≈ 1/16), there are 3 wrong combinations of h1 candidates. They identify the
wrong g1 candidate with probability 15·15·14

163 .

Concluding, the probability of identifying a wrong g1 candidate by a simple
test is

1
16

+
15
16

·
(

9
16

· 1 +
6
16

·
(

15
16

)
+

1
16

·
(

15 · 15 · 14
163

))
≈ 0.9646.

Consequence: In the following, we will thus assume that the correct candidates
for equations P1033⊕P13, . . . , P3092⊕P2072 have been identified. In reality, there
will be a small number of such equations that have two candidates, but the per-
centage is small enough not to significantly influence the analysis in the following
sections (it will only make an implementation of the attack slightly messier).

Once the correct candidates for equations P1033 ⊕ P13, . . . , P3092 ⊕ P2072 are
known, we can also identify the correct candidates for the h1 values of the same
lines. Thus, in the following, we can assume that the upper half-bytes are known
for the h1 values under consideration, i.e. the sequence words P1024, . . . , P3083.

By repeating the same procedure for rounds

r = 1049, . . . , 2047, r = 3072, . . . , 4095, r = 5120, . . . , 6143, r = 7168, . . . , 7188,

the same bits can be determined for sequence words Q1024, . . . , Q3071.

4.3 Step 2: Reducing the Number of Candidates

In the second step, we will reduce the number of candidates for Q1024, . . . , Q3059

and P2048, . . . , P3071 from 216 to 28.



Sequence words Q1024, . . . , Q2035: Let us consider the calls to the function

zr = h2(Q[j � 12])⊕Q[j]

that occur in rounds r = 3084, . . . , 4095. They access the sequence words Q1024,
. . . , Q2047 and P1024, . . . , P2047. According to Subsection 4.2, we know all upper
half-bytes for these entries. Now we have to try and learn as much as possible
about the remaining inner state from this information.

Let γ0, . . . , γ3 = (00||Q[j � 12](7..0)), . . . , (11||Q[j � 12](31..24)). Then we can
re-write the above equation as follows:

zr ⊕Q[j] = P [γ0] � P [γ1] � P [γ2] � P [γ3] (1)

Remember that the adversary knows the keystream word zr. Also note that for
Q[j], Q[j � 12] and for all P [γi] involved, we know the upper half-bytes. We will
now proceed by guessing the remaining 16 bits of Q[j � 12] and then verifying
the result by using eq. (1).

If the equation would use ⊕ instead of �, verification would be straightfor-
ward. We would use the upper half-bytes to obtain 16 linear equations in GF(2).
Since we also have to guess 16 bit for Q[j � 12], only one false guess would pass
this test on average.

However, for addition, we have to take carries into account. If we write
AI , . . . , AIV instead of A(7..4), . . . , A(31..28) for the four upper half-bytes of a
word A, then we can write 4 verification equations as follows:

zI
r ⊕ Q[j]I = P [γ0]I � P [γ1]I � P [γ2]I � P [γ3]I � c0

zII
r ⊕ Q[j]II = P [γ0]II � P [γ1]II � P [γ2]II � P [γ3]II � c1

zIII
r ⊕ Q[j]III = P [γ0]III � P [γ1]III � P [γ2]III � P [γ3]III � c2

zIV
r ⊕ Q[j]IV = P [γ0]IV � P [γ1]IV � P [γ2]IV � P [γ3]IV � c3

Here, c0, . . . , c3 are the carry values, taken from {0, 1, 2, 3}.
Thus, if we want to use the above equations to verify our guess for Q[j �12],

we have to guess the carry values, too. In total, this gives us 216 · 28 = 224

possible guesses. On the other hand, we have 16 verification bits. This means
that on average, 28 guesses for Q[j � 12] will survive the test. For the table
entries Q1024, . . . , Q2035, we write these guesses into a table.

Sequence words Q2036, . . . , Q3059: It remains to reconstruct the remaining words
Q2036, . . . , Q3059, which can be done in a similar manner by considering rounds
r = 5120, . . . , 6143. These rounds use the sequence words Q2036, . . . , Q3071, as
well as some of the sequence words P2048, . . . , P3071. Using the same technique
as above, we can reduce the number of candidates for Q2036, . . . , Q3059 to ap-
proximately 28 candidates each.

Sequence words P2048, . . . , P3071: The same technique can also be applied to re-
duce the number of candidates for the sequence words P2048, . . . , P3071. We do
this by considering the rounds r = 4108, . . . , 5119, which use sequence words



P2048, . . . , P3071 as well as Q1024, . . . , Q2047. From this, we can reduce the num-
ber of candidates for P2048, . . . , P3071 to 28. Afterwards, we consider rounds
6144, . . . , 6155, which use sequence words P3060, . . . , P3083 as well as some of
the table entries Q2048, . . . , Q3071.

Resulting table: For Q1024, . . . , Q3059 and P2048, . . . , P3071, the surviving candi-
date words are written in a table. The total size of this table is 3060·28 ·4 ≈ 3·220

byte, i.e. 3 MByte.

4.4 Step 3: Backtracking Attack

In the final step, we reduce the number of candidates for Q1024, . . . , Q2047 and
P2048, . . . , P3071 to one.

Reconstructing table Q: Consider code line 6 as it is called in round r = 5120.
It has the following form:

Q2048 = Q1024 � Q2038 � g2(Q2045, Q1025).

This means that the equation uses the variables Q1024, Q1025, Q2038, Q2045, Q2048

and an entry of table P with unknown index. For each of these 6 variables, we
have an average of 28 possible assignments. If we guess all of these assignments,
we obtain 248 possible candidates. Since wrong guesses for the 32-bit values
satisfy a linear equation with probability 1/232, only ≈ 216 of them remain as
valid states.

We proceed in the same way for round r = 5121, which requires variables
Q1025, Q1026, Q2039, Q2046, Q2049 and an entry of table P . Note that Q1025 is
already known from last round, meaning that we only have to guess 5 variables3.
Our search space increases to 216 ·240 = 256, then it collapses to 224 when filtering
out the assignments that don’t fulfil the equation.

Repeating the same step for round r = 5122 increases our search tree to
264, then collapsing it to 232. For round r = 5123, however, two of the required
variables are already known. This means that only 4 variables have to be guessed,
and the search tree expands to 264 and reduces itself to 232 after verification.

It continues to behave that way until round r = 5127. In this round, we need
three variables that have already been guessed before. This means that the tree
only expands to 256 candidates and then collapses back to 224. From now on,
the tree size will reduce itself with every round, until round r = 5130 when it
has size ≈ 1 after verification, i.e. only valid guesses remain. From now on, every
candidate guess can be verified right away.

Concluding, after running through rounds r = 5120, . . . , 6143, we have re-
constructed the correct solution for table entries Q1024, . . . , Q2047.

3 Of course, there is also a possibility that the table entry for table P repeats itself, but
this probability is not very high in the first rounds. Should this happen by chance,
the attack becomes even more efficient.



Reconstructing table P : Note that from the guesses above, a significant num-
ber of entries for table P have already been reconstructed. There are numer-
ous possiblities for determining the remaining entries. A very simple one would
be to run the same attack as above, using code line 3 instead of line 6. Note
that this requires extra cache timings to reduce the number of candidates for
P3072, . . . , P4095 to 28, each.

A more intelligent approach uses code line 4 for rounds r = 5008, . . . , 5119.
This code line requires only two guesses from table P (with high probability at
least one of them is known anyway) and allows verification against the full 32-bit
keystream word (16 bits of which have not yet been taken into account). This
technique should rapidly identify the missing entries for table P .

5 Consequences

5.1 Cost of the Attack

The above attack retrieves the full contents of tables P and Q at the beginning of
round r = 6144. Given such a snapshot of both tables, we can run the generator
forwards to generate previously unknown keystream bits. We can also run it
backwards to retrieve the key (the state update function and the key/IV setup
are invertible). This shows that an attack is even possible for a synchronous cache
adversary (not only for an asynchronous adversary, as suspected by Bernstein
[2])4.

The main computational step is the backtracking attack, which requires less
than 5 · 264 < 267 computational steps that consist in verifying one equation.
Since the key/IV setup of HC-256 has to compute the same equation 4096 = 212

times (plus does a number of other computations), the effort is less than trying
255 keys in a brute-force setting. The memory requirements are around 3 MB for
the candidate tables, plus a little memory for the search tree (implementing it
in a depth-first search fashion keeps the memory consumption low). In addition,
we have assumed the availability of precise cache measurements for 6148 chosen
rounds, and of 2048 known keystream words. We point out that our attack is
not optimised in any way. It is likely that a better attack can be found using less
cache measurements and computational effort. Nonetheless, the huge number
of necessary cache timing measurements required for this attack indicates how
difficult it would be to apply a similar attack in the standard model.

If the attack is run on a processor with a different cache block size, efficiency is
influenced. For example, if the cache block size is only 32 byte instead of 64 byte,
the adversary learns 7 bit for each table lookup. In this case, no backtracking
phase is required at all – the solution can already be determined by the reduction
step in Subsection 4.3. On the other hand, if the cache block size is e.g. 128 byte,
then only 5 bits for each table lookup are recovered, and the backtracking gets
a lot more expensive.

4 For a definition of synchronous and asynchronous cache adversaries, see Section 6



5.2 Design Recommendations

While trying to break HC-256 (and doing initial analysis of other stream ciphers),
we met a number of obstacles that might be possible defense mechanisms against
cache timing attacks. Some of them may be known to cipher designers already,
but to the best of our knowledge, they have not been documented. Thus, we
provide a short list of design recommendations that make cache timing attacks
more difficult if use of tables can not be avoided altogether:

1. Make as many table accesses for one function call as possible. This makes
things harder for a synchronous adversary, who has to match the observed
indices to the inner state. For HC-256, this matching was relatively easy,
which made the attack possible in the first place.

2. Make the inner state size large compared to the information obtained from
one cache measurement. In the case of HC-256, one call to Next() yields 32
bit of keystream information and 52 bit of side-channel information. Because
of the large inner state, this means that at least 65, 536/84 ≈ 780 precise
cache access measurements (or many more noisy ones) have to be made to
retrieve the inner state.

3. Exploit that the least significant bits of the table index remain unknown
(in our analysis, bits 3..0). This can be achieved by using state update and
output generation functions that generate a lot of diffusion without the use
of S-boxes. As an example, functions using carry (like addition and multi-
plication) are suitable for this purpose.

4. Use variable tables instead of (fixed content) S-boxes. This gives the adver-
sary insecurity both about the input and the output of the tables.

6 Attack Model

In the following, we justify and generalise the abstract attack model that was
used for our attack, such that it also can be used to analyse other stream ciphers.

6.1 Motivation

Whether or how cache timing attacks can be used against a cipher depends on
the details of the system deploying it. This is not helpful for cipher designers who
are not allowed to make assumptions about the deployment environment. While
it is possible that certain attack options are not available in a fielded system,
the cipher designer must not rely on this unavailability.

Thus, he works under worst-case assumptions. As an example, while most
practical systems will not give the adversary 240 plaintext/ciphertext pairs, ci-
phers are nonetheless designed to withstand an attack that has this amount of
information available. Unless we want to make very detailed restrictions on how
the cipher is to be used, overestimating the adversary’s abilities is a key strategy.

A cipher designer who is concerned about cache timing attacks has to proceed
in the same way. He has to assume that the adversary gets the maximum amount
of information, and then see what damage this would do to the cipher. Ciphers
secure under such a model will most likely be secure in practice, too.



6.2 Standard Adversary

In traditional (non-side-channel) stream cipher design, the adversary is assumed
to have the following oracles available:

– KeySetup(): The adversary requests the cipher to be re-initialised with a
new key. No output is returned.

– IVSetup(N): The adversary requests the cipher to be re-initialised with the
initialisation vector N that has not been used before. No output is returned.

– Keystream(i): The adversary requests the cipher to return the i-th key-
stream block to him. The block length depends on the cipher design.

An adversary is considered successful if he can distinguish an instance of the
stream cipher from a random function producing appropriately formatted (but
random) answers to his oracle queries. A cipher is considered secure if for any
adversary, the success probability is less than that of the generic adversary using
the same computational resources on brute-force key testing.

6.3 Synchronous Cache Adversary

The notion of synchronous cache attacks was introduced by Osvik et al. in [13].
In such an attack, the adversary interacts with the encryption code through
some type of interface, and he obtains additional information by making cache
measurements before or after execution of this code.

In our model, such an adversary can use the same oracles as the standard
adversary. In addition, he also has access to the following cache timing oracles:

– SCT KeySetup(): The adversary obtains a list of all cache accesses made
by KeySetup().

– SCT IVSetup(N): The adversary obtains a list of all cache accesses made
by IVSetup(N).

– SCT Keystream(i): The adversary obtains a list of all cache accesses made
by Keystream(i).

In particular, this reflects accurate measurements in a prime-then-probe attack,
which seems to be the strongest SCT technique to date; making weaker as-
sumptions would not cover this attack method adequatly. Note that the attack
described in Sections 3 and 4 use the synchronous attack model.

6.4 Asynchronous Cache Adversary

While a synchronous adversary has to wait until user U has finished the execution
of a certain operation, asynchronous adversaries run in parallel to U . This is
possible e.g. on processors with hyperthreading. In this setting, the adversary
can constantly monitor the cache state, which gives him an ordered list of all
cache accesses made during the observation.

Osvik et al. [13] assume that the adversary obtains no additional information
beyond the cache accesses. However, from a designer’s point of view, we can



not restrict ourselves in this way. It is easy to imagine an adversary who both
controls some of the input/output data and observes cache behaviour. Thus, in
our model, an asynchronous cache adversary has access to the standard oracles
as well as the following side-channel oracles:
– ACT KeySetup(): The adversary obtains a list of all cache accesses made

by KeySetup() in chronological order.
– ACT IVSetup(N): The adversary obtains a list of all cache accesses made

by IVSetup(N) in chronological order.
– ACT Keystream(i): The adversary obtains a list of all cache accesses made

by Keystream(i) in chronological order.

6.5 Discussion

Our attack model abstracts away a number of practical difficulties the adversary
might encounter:
– The encryption process is not the only one using the cache. Cache accesses

made by other processes generate false positives. Thus, instead of a list of
encryption cache accesses, a real-world adversary only obtains a list of cache
blocks that have not been used by the encryption process.

– Cache timing measurements are subject to timing noise. Thus, the list ob-
tained by the adversary may contain false information that has to be filtered
out by statistical or analytical methods.

– The granularity of the measurements may not correspond to the above oracle
calls. This depends on how time sharing on the processor is organised.

– The adversary may be unable to choose the IV, or to observe the keystream.

Thus, the model has to be considered as being generous towards the adversary.
However, while doing one measurement only creates a noisy version of the cache
access list, repeating the measurement and using statistical methods will often
eliminate most of the noise.

In order to do this, the function calls have to be repeated under the same key
and IV. While at the first glance, this seems to be IV re-use and thus a breach of
the security contract, a second look shows that this is not the case at all. All the
security contract disallows is re-using the IV for a different plaintext, i.e. IV re-
use for the same plaintext is allowed. In particular, it is easy to imagine scenarios
where the rightful user decrypts the same ciphertext several times (e.g. an entry
in an encrypted database that is accessed repeatedly). Thus, in certain settings,
obtaining the necessary measurements might actually be possible.

Note that in addition to analysing cipher resistance against cache timing
attacks, the model can also be used to derive security margins for the standard
model. If the best cache timing attack against a given cipher requires a large
number of cache measurements, then the cipher may be considered as being more
robust than one that can be broken by only a few calls to the side-channel oracles.
Thus, analysing a cipher in our model achieves a similar effect as analysing
modified (e.g. reduced-round) versions of a design: Even though an attack may
not constitute a break in the standard model, it indicates how far we are from
attacking the full cipher according to specification.



7 Conclusions

In this paper, we have described a cache-timing attack against the stream cipher
HC-256, which is the strong version of eStream winner HC-128. The attack was
based on a abstract model of cache timing attacks that can also be used for
designing stream ciphers. From the observations made in our analysis, we have
derived a number of design principles for hardening ciphers against cache timing
attacks.
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