Cache Timing Analysis of HC-256

Erik Zenner

Technical University Denmark (DTU)
Institute for Mathematics
e.zenner@mat.dtu.dk

SASC 2008, Feb. 14, 2008

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

@ Cache Timing Attacks

© Our Attack Model

© Attacking HC-256

@ Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256

SASC 2008, Feb. 14, 2008

2/ 23

Cache Timing Attacks

Outline

@ Cache Timing Attacks

Erik Zenner (DTU-MA Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

Cache Timing Attacks

Cache Workings (Simplified)

Motivation: Loading data from cache is much faster than loading data
from RAM (by a factor of ~ 10).

Working principle (simplified): Let n be the cache size.
When data from RAM address a is requested by the CPU, proceed as
follows (simplified):
o Check whether requested data is at cache address (a mod n).
o If not, load data into cache address (a mod n).
o Load data item directly from cache.
Similarly for writing data to RAM.

Idea: Data that is used now will more likely be used again in the future
=- Keeping copies in cache reduces the average loading time.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

4/ 23

Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache

Address Cache RAM

0

[NN

NS —

n-1

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

5 /23

Cache Timing Attacks
Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:
Q@ A fills all of the cache with his own data, then he stops working.
@ B does his encryption.
© A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 6 /23

Cache Timing Attacks
Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

o Cache data is not organised in bytes, but in blocks.
= We do not learn the exact index, but only some index bits.

o Other processes (e.g. system processes) use the cache, too.
= We can not tell “encryption” cache accesses apart from others.

o Timing noise disturbs the measurement.
= Not all slow timings are due to cache misses.

o Cache hierarchy is more complex.
= Several layers of cache, several cache blocks for each memory
block.

Nonetheless, as it turns out, these difficulties can be overcome in practice
(Bernstein 2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 7/23

Our Attack Model

Outline

© Our Attack Model

Erik Zenner (DTU-MA Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

Our Attack Model
Motivation

When setting up the attack model, our motivation was as follows:
@ Abstract away technical details of the cache timing attacks.
o Have a model that is suitable for designing cryptographic algorithms.

= Model has to be rather generous w.r.t. the attacker's abilities.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 9 /23

Our Attack Model
Attack Model

Available Oracles:

The

(*]

adversary can use any of the following functions / oracles at will:

Key_setup: Sets up a new cipher instance. Does not return any
output.

Key_Cache_Access: Returns an accurate list of the cache blocks
accessed while running Key_setup.

IV_setup(N): Resets the cipher instance with initialisation vector N,
as chosen by the attacker. Does not return any output.

IV_Cache_Access(N): Returns an accurate list of the cache blocks
accessed while running IV _setup(N).

Keystream(i): Returns the keystream block i.

KS_Cache_Access(i): Returns an accurate list of the cache blocks
accessed while running Keystream(i).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 10 / 23

Qur Attack Model
Discussion

Clarification:
This model is very generous towards the adversary. In the real world, he
may not be able to

@ observe every encryption operation,

@ get a precise list of cache block accesses,
@ choose the IV, or
°

observe the keystream.

This means that cryptanalytic results obtained in this model are not
necessarily attacks in the real world.

But: As with all other design criteria in cryptography, the designer should
not rely on things that the adversary might not be able to do!

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 11 /23

Attacking HC-256

Outline

© Attacking HC-256

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 12 / 23

About HC-256

Stream cipher (FSE 2004), eStream software finalist.
Key/IV: 256 bit each.

o Inner State: Two tables, 1024 - 32 bit each.
= 65,536 bits of inner state.
One Round:
o Update one of the tables.
o Produce 32 bit of output.
Performance:

o Designed for software.
o Slow key/IV setup (due to table initialisation).
o Fast keystream generation.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

Attacking HC-256
Sketch of the Attack

The attacker uses the following oracles:
@ 6148 calls to KS_Cache_Access(i).
@ 2048 calls to Keystream(i).

Then he uses three layers of guess-and-verify to determine the inner state:
@ Determine the block access ordering.
Q Guess-and-eliminate step.

© Guess-and-determine step.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 14 / 23

Attacking HC-256

Step 1: Block Access Ordering

Adversary makes 6148 calls to KS_Cache_Access(i) and maps the resulting
observations to inner state bits.

Problem: Mapping of cache accesses to state variables.

o Each oracle call: 5 cache accesses, e.g.:
001011xxxx, 011100xxxx, 010011xxxx, 101101xxxx, 111110xxxx

@ How to assign them to internal state variables? E.g.:
(00]|P5), (01]|PGE>Y), (10]|PE> 1), (11]|PS2Y), (P2 @ P_g5)0

Solution: Simple internal consistency test works with high probability!

End of step 1:

For almost all inner state words, we know all upper half-bytes.
= 216 candidates for each inner state word.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 15 / 23

Attacking HC-256

Step 2: Guess-and-Eliminate Step

Adversary makes 2048 calls to Keystream(i) and uses an internal equation
to further reduce the number of candidates.

Problem: Carry bits complicate the equation.

@i@l@mnt STOTe -
I E)

(16) (4 (8)
known bits unknown bits

Solution: Guess the carry bits, too.

End of step 2:

28 remaining candidates for each inner state word.
= Store in a table (size ~ 3 MByte).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

Attacking HC-256

Step 3: Guess-and-Determine Step

Adversary uses guess-and-determine strategy with a different equation to
determine the rest of the inner state.

Problem: Many bits have to be guessed before verification becomes

possible.

o Guess 2%8 assignments, obtain 32 verification bits.

= 2! assignments remain.

Solution: Guesses start to overlap.
@ Search tree grows less fast than in the beginning.
o After some steps, search tree starts to shrink.

o Maximum tree width: 2%4 guesses.

End of step 3:
Full inner state for one point in time has been recovered.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 17 / 23

Attacking HC-256
The Attack in a Nutshell

Requirements:
@ 6148 precise cache timing measurements.
@ 216 known plaintext bits.
o Computational effort corresponding to testing =~ 2°° keys.
o

~ 3 MByte of memory.

Result:
@ Reconstruction of full inner state.
o Allows to create arbitrary output bits.

@ Also allows to reconstruct the key.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

Conclusions

Outline

@ Conclusions

Erik Zenner (DTU-MA Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 19 / 23

Conclusions
Practical Relevance

Question: So is HC-256 broken?

Answer: Not unless you already stopped using AES for security reasons.
o Attack uses very strong assumptions.
o AES would be completely broken under the same assumptions.

But: Relevance of cache timing attacks is currently an open issue.
o A distinguisher using 2°0 known plaintexts is sufficient to discard a
cipher.
o How about a key recovery attack using ~ 6,000 precise cache
timings?

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 20 / 23

Conclusions

Other eStream Software Finalists (1)

\ Cipher \ Tables \ Relevant \
CryptMT none -
Dragon Two 8 x 32-bit S-Boxes T
HC-128 Two 9 x 32-bit tables
HC-256 Two 10 x 32-bit tables 1
LEX-128 One 8 x 8-bit S-Box (ref. code)

Eight 8 x 32-bit S-Boxes (opt. code) T
NLS One 8 x 32-bit S-Box T
Rabbit none -
Salsa-20 none -
Sosemanuk | One 8 x 32-bit table,

eight 4 x 4-bit S-Boxes (ref. code)

One 8 x 32-bit table (opt. code) T

(t = potentially vulnerable)

Erik Zenner (DTU-MAT)

Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008

21 /23

Conclusions

Other eStream Software Finalists (2)

o Expectation: When starting analysis in the above (generous) model,
we expected most eStream candidates to break down completely.

o Surprise: Most candidates seem to withstand analysis even in the
generous model surprisingly well, even though they were not designed
to that purpose (exception: Salsa).

@ Work on cryptanalysis is still in progress.

o No one-size-fits-all attack
o Different ciphers pose different problems
o Individual analysis required

o Guess: Attacks are possible, but require some thought (exception:
LEX).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 22 /23

Conclusions
And finally...

Questions? Comments?

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 23 /23

	Cache Timing Attacks
	Our Attack Model
	Attacking HC-256
	Conclusions

