
Cache Timing Analysis of HC-256

Erik Zenner

Technical University Denmark (DTU)
Institute for Mathematics

e.zenner@mat.dtu.dk

SASC 2008, Feb. 14, 2008

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 1 / 23

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 2 / 23

Cache Timing Attacks

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 3 / 23

Cache Timing Attacks

Cache Workings (Simplified)

Motivation: Loading data from cache is much faster than loading data
from RAM (by a factor of ≈ 10).

Working principle (simplified): Let n be the cache size.
When data from RAM address a is requested by the CPU, proceed as
follows (simplified):

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

Similarly for writing data to RAM.

Idea: Data that is used now will more likely be used again in the future.
⇒ Keeping copies in cache reduces the average loading time.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 4 / 23

Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 5 / 23

Cache Timing Attacks

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:

1 A fills all of the cache with his own data, then he stops working.

2 B does his encryption.

3 A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 6 / 23

Cache Timing Attacks

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Cache data is not organised in bytes, but in blocks.
⇒ We do not learn the exact index, but only some index bits.

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, as it turns out, these difficulties can be overcome in practice
(Bernstein 2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 7 / 23

Our Attack Model

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 8 / 23

Our Attack Model

Motivation

When setting up the attack model, our motivation was as follows:

Abstract away technical details of the cache timing attacks.

Have a model that is suitable for designing cryptographic algorithms.

⇒ Model has to be rather generous w.r.t. the attacker’s abilities.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 9 / 23

Our Attack Model

Attack Model

Available Oracles:

The adversary can use any of the following functions / oracles at will:

Key setup: Sets up a new cipher instance. Does not return any
output.

Key Cache Access: Returns an accurate list of the cache blocks
accessed while running Key setup.

IV setup(N): Resets the cipher instance with initialisation vector N,
as chosen by the attacker. Does not return any output.

IV Cache Access(N): Returns an accurate list of the cache blocks
accessed while running IV setup(N).

Keystream(i): Returns the keystream block i .

KS Cache Access(i): Returns an accurate list of the cache blocks
accessed while running Keystream(i).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 10 / 23

Our Attack Model

Discussion

Clarification:
This model is very generous towards the adversary. In the real world, he
may not be able to

observe every encryption operation,

get a precise list of cache block accesses,

choose the IV, or

observe the keystream.

This means that cryptanalytic results obtained in this model are not
necessarily attacks in the real world.

But: As with all other design criteria in cryptography, the designer should
not rely on things that the adversary might not be able to do!

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 11 / 23

Attacking HC-256

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 12 / 23

Attacking HC-256

About HC-256

Stream cipher (FSE 2004), eStream software finalist.

Key/IV: 256 bit each.

Inner State: Two tables, 1024 · 32 bit each.
⇒ 65, 536 bits of inner state.

One Round:
Update one of the tables.
Produce 32 bit of output.

Performance:
Designed for software.
Slow key/IV setup (due to table initialisation).
Fast keystream generation.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 13 / 23

Attacking HC-256

Sketch of the Attack

The attacker uses the following oracles:

6148 calls to KS Cache Access(i).

2048 calls to Keystream(i).

Then he uses three layers of guess-and-verify to determine the inner state:

1 Determine the block access ordering.

2 Guess-and-eliminate step.

3 Guess-and-determine step.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 14 / 23

Attacking HC-256

Step 1: Block Access Ordering

Adversary makes 6148 calls to KS Cache Access(i) and maps the resulting
observations to inner state bits.

Problem: Mapping of cache accesses to state variables.

Each oracle call: 5 cache accesses, e.g.:
001011xxxx , 011100xxxx , 010011xxxx , 101101xxxx , 111110xxxx

How to assign them to internal state variables? E.g.:
(00||P(7..0)

13), (01||P(15..8)
13), (10||P(23..16)

13), (11||P(31..24)
13), (P22 ⊕ P−998)

(9..0)

Solution: Simple internal consistency test works with high probability!

End of step 1:

For almost all inner state words, we know all upper half-bytes.
⇒ 216 candidates for each inner state word.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 15 / 23

Attacking HC-256

Step 2: Guess-and-Eliminate Step

Adversary makes 2048 calls to Keystream(i) and uses an internal equation
to further reduce the number of candidates.

Problem: Carry bits complicate the equation.

Solution: Guess the carry bits, too.

End of step 2:

28 remaining candidates for each inner state word.
⇒ Store in a table (size ≈ 3 MByte).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 16 / 23

Attacking HC-256

Step 3: Guess-and-Determine Step

Adversary uses guess-and-determine strategy with a different equation to
determine the rest of the inner state.

Problem: Many bits have to be guessed before verification becomes
possible.

Guess 248 assignments, obtain 32 verification bits.
⇒ 216 assignments remain.

Solution: Guesses start to overlap.

Search tree grows less fast than in the beginning.

After some steps, search tree starts to shrink.

Maximum tree width: 264 guesses.

End of step 3:

Full inner state for one point in time has been recovered.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 17 / 23

Attacking HC-256

The Attack in a Nutshell

Requirements:

6148 precise cache timing measurements.

216 known plaintext bits.

Computational effort corresponding to testing ≈ 255 keys.

≈ 3 MByte of memory.

Result:

Reconstruction of full inner state.

Allows to create arbitrary output bits.

Also allows to reconstruct the key.

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 18 / 23

Conclusions

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 19 / 23

Conclusions

Practical Relevance

Question: So is HC-256 broken?

Answer: Not unless you already stopped using AES for security reasons.

Attack uses very strong assumptions.

AES would be completely broken under the same assumptions.

But: Relevance of cache timing attacks is currently an open issue.

A distinguisher using 260 known plaintexts is sufficient to discard a
cipher.

How about a key recovery attack using ≈ 6, 000 precise cache
timings?

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 20 / 23

Conclusions

Other eStream Software Finalists (1)

Cipher Tables Relevant

CryptMT none -

Dragon Two 8× 32-bit S-Boxes †
HC-128 Two 9× 32-bit tables
HC-256 Two 10× 32-bit tables †
LEX-128 One 8× 8-bit S-Box (ref. code)

Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box †
Rabbit none -

Salsa-20 none -

Sosemanuk One 8× 32-bit table,
eight 4× 4-bit S-Boxes (ref. code)
One 8× 32-bit table (opt. code) †

(† = potentially vulnerable)

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 21 / 23

Conclusions

Other eStream Software Finalists (2)

Expectation: When starting analysis in the above (generous) model,
we expected most eStream candidates to break down completely.

Surprise: Most candidates seem to withstand analysis even in the
generous model surprisingly well, even though they were not designed
to that purpose (exception: Salsa).

Work on cryptanalysis is still in progress.

No one-size-fits-all attack
Different ciphers pose different problems
Individual analysis required

Guess: Attacks are possible, but require some thought (exception:
LEX).

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 22 / 23

Conclusions

And finally...

Questions? Comments?

Erik Zenner (DTU-MAT) Cache Timing Analysis of HC-256 SASC 2008, Feb. 14, 2008 23 / 23

	Cache Timing Attacks
	Our Attack Model
	Attacking HC-256
	Conclusions

