
A Cache Timing Analysis of HC-256

Erik Zenner

Technical University Denmark (DTU)
Institute for Mathematics

e.zenner@mat.dtu.dk

SAC 2008, Aug. 14, 2008

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 1 / 25

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 2 / 25

Cache Timing Attacks

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 3 / 25

Cache Timing Attacks

Memory Hierarchy (Simplified)

In a modern computer, different types of memory are used (simplified):

While CPU registers, RAM, and hard disk are protected against other
users on the same machine, the cache is not.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 4 / 25

Cache Timing Attacks

Cache Workings (Simplified)

Working principle: Let n be the cache size.
When data from RAM address a is requested by the CPU:

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

⇒ Next time data from address a can be loaded faster.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 5 / 25

Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 6 / 25

Cache Timing Attacks

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine Eve and Alice sharing a
CPU. If Eve knows that Alice is about to encrypt, she can proceed as
follows:

1 Eve fills all of the cache with her own data, then stops working.

2 Alice does her encryption.

3 Eve measures loading times to find out which of her entries have been
pushed out of the cache.

This way, Eve learns which cache addresses have been used by Alice.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 7 / 25

Cache Timing Attacks

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Cache data is not organised in bytes, but in blocks.
⇒ We do not learn the exact index, but only some index bits.

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, as it turns out, these difficulties can be overcome in practice
(Bernstein 2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 8 / 25

Our Attack Model

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 9 / 25

Our Attack Model

Standard Adversary

Standard Oracles:

In standard analysis of stream ciphers, the adversary has access to the fol-
lowing oracles:

KeySetup: Sets up a new cipher instance. Does not return any
output.

IVSetup(N): Resets the cipher instance with initialisation vector N,
as chosen by the adversary. Does not return any output.

Keystream(i): Returns the keystream block i .

Note:

These oracles overestimate the abilities of a real-world adversary, but
they are widely used for analysing stream ciphers.

We want to define additional oracles for a cache-timing adversary that
are equally universal.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 10 / 25

Our Attack Model

Synchronous Cache Adversary

Motivation:

Abstract away technical details of the cache timing attacks.

Available Oracles:

A synchronous cache adversary (SCA) has access to the following additional
oracles:

SCA KeySetup: Returns an accurate list of the cache blocks
accessed while running KeySetup.

SCA IVSetup(N): Returns an accurate list of the cache blocks
accessed while running IVSetup(N).

SCA Keystream(i): Returns an accurate list of the cache blocks
accessed while running Keystream(i).

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 11 / 25

Our Attack Model

Discussion

Criticism:
This model is rather generous towards the adversary. In the real world, he
may not be able to

observe every encryption operation,

get a precise list of cache block accesses,

choose the IV, or

observe the keystream.

⇒ Attacks in this model are not necessarily attacks in the real world.

Justification:

The model is meant for use in cipher design.

Designers must not rely on things that the adversary might not be
able to do!

⇒ The cache adversary model has to be generous towards the adversary.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 12 / 25

Attacking HC-256

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 13 / 25

Attacking HC-256

About HC-256

Stream cipher (FSE 2004), eStream software finalist.

Key/IV: 256 bit each.

Inner State: Two tables, 1024 · 32 bit each.
⇒ 65, 536 bits of inner state.

One Round:
Update one of the tables.
Produce 32 bit of output.

Performance:
Designed for software.
Slow key/IV setup (due to table initialisation).
Fast keystream generation.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 14 / 25

Attacking HC-256

Sketch of the Attack

The adversary uses the following oracles:

2048 calls to Keystream(i).

6148 calls to SCA Keystream(i).

Then he uses three layers of guess-and-verify to determine the inner state:

1 Determine the block access ordering.

2 Guess-and-eliminate step.

3 Guess-and-determine step.

We assume a textbook implementation of the cipher:

One call to Keystream(i) gives 32 output bits.

This excludes the optimised eStream implementation (512 output bits).

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 15 / 25

Attacking HC-256

Step 1: Block Access Ordering

Adversary makes 6148 calls to SCA Keystream(i) and maps the resulting
observations to inner state bits.

Problem: How to map cache accesses to state variables?

Each oracle call: 5 cache accesses, e.g.:
001011xxxx , 011100xxxx , 010011xxxx , 101101xxxx , 111110xxxx

How to assign them to internal state variables? E.g.:
(00||P(7..0)

13), (01||P(15..8)
13), (10||P(23..16)

13), (11||P(31..24)
13), (P22 ⊕ P−998)

(9..0)

Solution: Simple internal consistency test works with high probability!

End of step 1:

For almost all inner state words, we know all upper half-bytes.
⇒ 216 candidates for each inner state word.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 16 / 25

Attacking HC-256

Step 2: Guess-and-Eliminate Step (1)

Adversary makes 2048 calls to Keystream(i) and uses an internal equation
to further reduce the number of candidates.

Problem: Carry bits complicate the equation.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 17 / 25

Attacking HC-256

Step 2: Guess-and-Eliminate Step (2)

Solution: Guess the carry bits, too.

End of step 2:

28 remaining candidates for each inner state word.
⇒ Store in a table (size ≈ 3 MByte).

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 18 / 25

Attacking HC-256

Step 3: Guess-and-Determine Step

Adversary uses guess-and-determine strategy with a different equation to
determine the rest of the inner state.

Problems:

Many bits (48) have to be guessed
before verification becomes possible.

Too few verification bits (32)
available.

Solution: Guesses start to overlap.

Search tree grows slower than in the
beginning, then starts shrinking.

Maximum tree width: 264 guesses.

End of step 3:

Full inner state for one point in time has been recovered.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 19 / 25

Attacking HC-256

The Attack in a Nutshell

Requirements:

6148 precise cache timing measurements.

216 known plaintext bits.

Computational effort corresponding to testing ≈ 255 keys.

≈ 3 MByte of memory.

Result:

Reconstruction of full inner state.

Allows to create arbitrary output bits.

Also allows to reconstruct the key.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 20 / 25

Conclusions

Outline

1 Cache Timing Attacks

2 Our Attack Model

3 Attacking HC-256

4 Conclusions

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 21 / 25

Conclusions

Practical Relevance

Question: So is HC-256 broken?

Answer: Not unless you already stopped using AES for security reasons.

Attack uses very strong assumptions.

AES would be completely broken under the same assumptions.

But: Relevance of cache timing attacks is currently an open issue.

A distinguisher using 260 known plaintexts is sufficient to discard a
cipher.

How about a key recovery attack using ≈ 6, 000 precise cache
timings?

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 22 / 25

Conclusions

Other eStream Software Finalists (1)

Cipher Tables Relevant

CryptMT none -

Dragon Two 8× 32-bit S-Boxes ?

HC-128 Two 9× 32-bit tables ?

HC-256 Two 10× 32-bit tables †
LEX-128 Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box ?

Rabbit none -

Salsa-20/x none -

Sosemanuk One 8× 32-bit table (opt. code) ?

’†’ = vulnerable ’?’ = potentially vulnerable ’-’ = immune

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 23 / 25

Conclusions

Other eStream Software Finalists (2)

Expectation: When starting analysis in the above (generous) model,
we expected most eStream candidates to break down completely.

Surprise: Most candidates seem to withstand analysis even in the
generous model surprisingly well, even though they were not designed
to that purpose (exception: Salsa).

Work on cryptanalysis is still in progress.

No one-size-fits-all attack
Different ciphers pose different problems
Individual analysis required

Guess: Attacks are possible, but require some thought.

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 24 / 25

Conclusions

And finally...

Questions? Comments?

Erik Zenner (DTU-MAT) A Cache Timing Analysis of HC-256 SAC 2008, Aug. 14, 2008 25 / 25

	Cache Timing Attacks
	Our Attack Model
	Attacking HC-256
	Conclusions

