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Cache Timing Attacks

Memory Hierarchy (Simplified)

In a modern computer, different types of memory are used (simplified):

While CPU registers, RAM, and hard disk are protected against other
users on the same machine, the cache is not.
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Cache Timing Attacks

Cache Workings (Simplified)

Working principle: Let n be the cache size.
When data from RAM address a is requested by the CPU:

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

⇒ Next time data from address a can be loaded faster.
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Cache Timing Attacks

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).
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Cache Timing Attacks

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine Eve and Alice sharing a
CPU. If Eve knows that Alice is about to encrypt, she can proceed as
follows:

1 Eve fills all of the cache with her own data, then stops working.

2 Alice does her encryption.

3 Eve measures loading times to find out which of her entries have been
pushed out of the cache.

This way, Eve learns which cache addresses have been used by Alice.
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Cache Timing Attacks

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Cache data is not organised in bytes, but in blocks.
⇒ We do not learn the exact index, but only some index bits.

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, as it turns out, these difficulties can be overcome in practice
(Bernstein 2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).
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Our Attack Model

Standard Adversary

Standard Oracles:

In standard analysis of stream ciphers, the adversary has access to the fol-
lowing oracles:

KeySetup: Sets up a new cipher instance. Does not return any
output.

IVSetup(N): Resets the cipher instance with initialisation vector N,
as chosen by the adversary. Does not return any output.

Keystream(i): Returns the keystream block i .

Note:

These oracles overestimate the abilities of a real-world adversary, but
they are widely used for analysing stream ciphers.

We want to define additional oracles for a cache-timing adversary that
are equally universal.
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Our Attack Model

Synchronous Cache Adversary

Motivation:

Abstract away technical details of the cache timing attacks.

Available Oracles:

A synchronous cache adversary (SCA) has access to the following additional
oracles:

SCA KeySetup: Returns an accurate list of the cache blocks
accessed while running KeySetup.

SCA IVSetup(N): Returns an accurate list of the cache blocks
accessed while running IVSetup(N).

SCA Keystream(i): Returns an accurate list of the cache blocks
accessed while running Keystream(i).
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Our Attack Model

Discussion

Criticism:
This model is rather generous towards the adversary. In the real world, he
may not be able to

observe every encryption operation,

get a precise list of cache block accesses,

choose the IV, or

observe the keystream.

⇒ Attacks in this model are not necessarily attacks in the real world.

Justification:

The model is meant for use in cipher design.

Designers must not rely on things that the adversary might not be
able to do!

⇒ The cache adversary model has to be generous towards the adversary.
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Attacking HC-256

About HC-256

Stream cipher (FSE 2004), eStream software finalist.

Key/IV: 256 bit each.

Inner State: Two tables, 1024 · 32 bit each.
⇒ 65, 536 bits of inner state.

One Round:
Update one of the tables.
Produce 32 bit of output.

Performance:
Designed for software.
Slow key/IV setup (due to table initialisation).
Fast keystream generation.
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Attacking HC-256

Sketch of the Attack

The adversary uses the following oracles:

2048 calls to Keystream(i).

6148 calls to SCA Keystream(i).

Then he uses three layers of guess-and-verify to determine the inner state:

1 Determine the block access ordering.

2 Guess-and-eliminate step.

3 Guess-and-determine step.

We assume a textbook implementation of the cipher:

One call to Keystream(i) gives 32 output bits.

This excludes the optimised eStream implementation (512 output bits).
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Attacking HC-256

Step 1: Block Access Ordering

Adversary makes 6148 calls to SCA Keystream(i) and maps the resulting
observations to inner state bits.

Problem: How to map cache accesses to state variables?

Each oracle call: 5 cache accesses, e.g.:
001011xxxx , 011100xxxx , 010011xxxx , 101101xxxx , 111110xxxx

How to assign them to internal state variables? E.g.:
(00||P(7..0)

13 ), (01||P(15..8)
13 ), (10||P(23..16)

13 ), (11||P(31..24)
13 ), (P22 ⊕ P−998)

(9..0)

Solution: Simple internal consistency test works with high probability!

End of step 1:

For almost all inner state words, we know all upper half-bytes.
⇒ 216 candidates for each inner state word.
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Attacking HC-256

Step 2: Guess-and-Eliminate Step (1)

Adversary makes 2048 calls to Keystream(i) and uses an internal equation
to further reduce the number of candidates.

Problem: Carry bits complicate the equation.
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Attacking HC-256

Step 2: Guess-and-Eliminate Step (2)

Solution: Guess the carry bits, too.

End of step 2:

28 remaining candidates for each inner state word.
⇒ Store in a table (size ≈ 3 MByte).
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Attacking HC-256

Step 3: Guess-and-Determine Step

Adversary uses guess-and-determine strategy with a different equation to
determine the rest of the inner state.

Problems:

Many bits (48) have to be guessed
before verification becomes possible.

Too few verification bits (32)
available.

Solution: Guesses start to overlap.

Search tree grows slower than in the
beginning, then starts shrinking.

Maximum tree width: 264 guesses.

End of step 3:

Full inner state for one point in time has been recovered.
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Attacking HC-256

The Attack in a Nutshell

Requirements:

6148 precise cache timing measurements.

216 known plaintext bits.

Computational effort corresponding to testing ≈ 255 keys.

≈ 3 MByte of memory.

Result:

Reconstruction of full inner state.

Allows to create arbitrary output bits.

Also allows to reconstruct the key.
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Conclusions

Practical Relevance

Question: So is HC-256 broken?

Answer: Not unless you already stopped using AES for security reasons.

Attack uses very strong assumptions.

AES would be completely broken under the same assumptions.

But: Relevance of cache timing attacks is currently an open issue.

A distinguisher using 260 known plaintexts is sufficient to discard a
cipher.

How about a key recovery attack using ≈ 6, 000 precise cache
timings?
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Conclusions

Other eStream Software Finalists (1)

Cipher Tables Relevant

CryptMT none -

Dragon Two 8× 32-bit S-Boxes ?

HC-128 Two 9× 32-bit tables ?

HC-256 Two 10× 32-bit tables †
LEX-128 Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box ?

Rabbit none -

Salsa-20/x none -

Sosemanuk One 8× 32-bit table (opt. code) ?

’†’ = vulnerable ’?’ = potentially vulnerable ’-’ = immune
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Conclusions

Other eStream Software Finalists (2)

Expectation: When starting analysis in the above (generous) model,
we expected most eStream candidates to break down completely.

Surprise: Most candidates seem to withstand analysis even in the
generous model surprisingly well, even though they were not designed
to that purpose (exception: Salsa).

Work on cryptanalysis is still in progress.

No one-size-fits-all attack
Different ciphers pose different problems
Individual analysis required

Guess: Attacks are possible, but require some thought.
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Conclusions

And finally...

Questions? Comments?
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