
Cache Timing Attacks on eStream Finalists

Erik Zenner

Technical University Denmark (DTU)
Institute for Mathematics

e.zenner@mat.dtu.dk

Echternach, Jan. 9, 2008

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 1 / 30



1 Cache Timing Attacks
Basics
The AES Case
Comments

2 Analysing eStream Candidates
Model for Analysis
Candidates
Obstacles to Analysis
Some Questions

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 2 / 30



Cache Timing Attacks

Outline

1 Cache Timing Attacks
Basics
The AES Case
Comments

2 Analysing eStream Candidates
Model for Analysis
Candidates
Obstacles to Analysis
Some Questions

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 3 / 30



Cache Timing Attacks Basics

Memory Hierarchy

In a modern computer, different types of memory are used (simplified):

While CPU, RAM, and hard disk are typically protected against use by
another user on the same machine, the cache is not.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 4 / 30



Cache Timing Attacks Basics

Cache Workings (1)

Motivation: Loading data from cache is much faster than loading data
from RAM (by a factor of ≈ 10).

Working principle (simplified): Let n be the cache size.
When data from RAM address a is requested by the CPU, proceed as
follows (simplified):

Check whether requested data is at cache address (a mod n).

If not, load data into cache address (a mod n).

Load data item directly from cache.

Similarly for writing data to RAM.

Idea: Data that is used now will more likely be used again in the future
(temporal proximity).
⇒ Keeping copies in cache reduces the average loading time.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 5 / 30



Cache Timing Attacks Basics

Cache Workings (2)

Extension: In addition, data that is physically close to currently used data
will also more likely be used in the future (spatial proximity).
⇒ Keeping copies of physically close data in cache also reduces the
average loading time.

Consequence:

Organise both cache and RAM into blocks of size s.

When loading a piece of data to cache, load the whole block that
surrounds it.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 6 / 30



Cache Timing Attacks Basics

Cache Eviction (Simplified)

Problem: Cache is much smaller than RAM.

Consequence: Many RAM entries compete for the same place in cache.

Handling: New data overwrites old data (First in, first out).

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 7 / 30



Cache Timing Attacks Basics

Sample Attack Setting

Starting point: Reading data is faster if it is in cache (cache hit), and
slower if it has to be loaded (cache miss).

Sample attack (prime-then-probe): Imagine two users A and B sharing
a CPU. If user A knows that user B is about to encrypt, he can proceed as
follows:

1 A fills all of the cache with his own data, then he stops working.

2 B does his encryption.

3 A measures loading times to find out which of his data have been
pushed out of the cache.

This way, A learns which cache addresses have been used by B.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 8 / 30



Cache Timing Attacks The AES Case

What need to know about AES...

Notation: AES-128 transforms a 16-byte plaintext m = (m0, . . . ,m15)
into a 16-byte ciphertext c = (c0, . . . , c15), using a 16-byte key
k = (k0, . . . , k15).

Description: We give no full description of AES here.
All we need to know is step 1 of a typical AES-128 implementation
(optimised; not identical to the textbook description):

For all j = 0, . . . , 15:
Look up Fj mod 4[mj ⊕ kj ] in an 8× 32 table Fi (i ∈ {0, 1, 2, 3}).

We ignore all the remaining steps here, we just point out that they also
make use of the tables Fi .

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 9 / 30



Cache Timing Attacks The AES Case

Cache Timing Attack against AES (1)

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see where the
tables Fi lie in cache.

3 We can also see which blocks in
the tables Fi have not been
accessed.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 10 / 30



Cache Timing Attacks The AES Case

Cache Timing Attack against AES (1)

1 Running a cache timing attack
gives the adversary a table with
this structure.

2 We can clearly see where the
tables Fi lie in cache.

3 We can also see which blocks in
the tables Fi have not been
accessed.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 10 / 30



Cache Timing Attacks The AES Case

Cache Timing Attack against AES (2)

1 This gives us a list L̂ of candidate indices a for which Fi [a] has not
been used.

2 In step 1, AES accessed the table for Fj mod 4[mj ⊕ kj ].

⇒ mj ⊕ kj can not be in L̂!

3 Make list of candidates for kj = a⊕mj ∀a /∈ L̂.

4 Re-run attack and intersect the resulting lists.

5 Repeat until brute-force of the remaining key candidates becomes
possible.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 11 / 30



Cache Timing Attacks Comments

Practical Difficulties

For didactical reasons, we worked with a simplified cache model.

Real-world complexities include:

Other processes (e.g. system processes) use the cache, too.
⇒ We can not tell “encryption” cache accesses apart from others.

Timing noise disturbs the measurement.
⇒ Not all slow timings are due to cache misses.

Cache hierarchy is more complex.
⇒ Several layers of cache, several cache blocks for each memory
block.

Nonetheless, as it turns out, these difficulties can be overcome in practice
(Bernstein 2005, Osvik/Shamir/Tromer 2005, Bonneau/Mironov 2006).

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 12 / 30



Analysing eStream Candidates

Outline

1 Cache Timing Attacks
Basics
The AES Case
Comments

2 Analysing eStream Candidates
Model for Analysis
Candidates
Obstacles to Analysis
Some Questions

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 13 / 30



Analysing eStream Candidates Model for Analysis

Motivation

When setting up the attack model, our motivation was as follows:

Abstract away technical details of the cache timing attacks.

Have a model that is suitable for designing cryptographic algorithms.

⇒ Model has to be rather generous w.r.t. the attacker’s options.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 14 / 30



Analysing eStream Candidates Model for Analysis

Attack Model (1)

Assumption 1:

The adversary can trigger the execution of any of the following functions at
will:

Key setup

IV setup (with chosen IV)

Keystream generation (with chosen index)

Assumption 2:

The adversary can choose the IV, and he can observe the keystream as
usual.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 15 / 30



Analysing eStream Candidates Model for Analysis

Attack Model (1)

Assumption 1:

The adversary can trigger the execution of any of the following functions at
will:

Key setup

IV setup (with chosen IV)

Keystream generation (with chosen index)

Assumption 2:

The adversary can choose the IV, and he can observe the keystream as
usual.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 15 / 30



Analysing eStream Candidates Model for Analysis

Attack Model (2)

Assumption 3:

For each function call, the adversary obtains a correct and noise-free list of
the cache blocks accessed by this function call.

Voluntary Constraints:

In the first phase of our analysis, we made the following restrictions:

We tried to find a practical attack, meaning that:

The adversary can only call the above functions for a limited number of
times (say, < 1, 000, 000).
The attack should be executable on non-agency equipment (running
time, memory etc.).

The adversary is only successful if he can reconstruct the key or at
least the inner state.

Obviously, these restrictions should be dropped when the model is used for
cipher design.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 16 / 30



Analysing eStream Candidates Model for Analysis

Attack Model (2)

Assumption 3:

For each function call, the adversary obtains a correct and noise-free list of
the cache blocks accessed by this function call.

Voluntary Constraints:

In the first phase of our analysis, we made the following restrictions:

We tried to find a practical attack, meaning that:

The adversary can only call the above functions for a limited number of
times (say, < 1, 000, 000).
The attack should be executable on non-agency equipment (running
time, memory etc.).

The adversary is only successful if he can reconstruct the key or at
least the inner state.

Obviously, these restrictions should be dropped when the model is used for
cipher design.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 16 / 30



Analysing eStream Candidates Candidates

eStream Software Finalists

Cipher Tables Relevant

CryptMT none -

Dragon Two 8× 32-bit S-Boxes †
HC-128 Two 9× 32-bit tables
HC-256 Two 10× 32-bit tables †
LEX-128 One 8× 8-bit S-Box (ref. code)

Eight 8× 32-bit S-Boxes (opt. code) †
NLS One 8× 32-bit S-Box †
Rabbit none -

Salsa-20 none -

Sosemanuk One 8× 32-bit table,
eight 4× 4-bit S-Boxes (ref. code)
additional tables for fast Serpent (opt. code) †

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 17 / 30



Analysing eStream Candidates Candidates

A Trivial Design Recommendation

About the eStream finalists:

Salsa-20 is designed to be resistant to Cache Timing Attacks.

CryptMT and Rabbit are resistant, probably by accident.

LEX falls to the same attacks as AES, since it uses AES for key/IV
setup.

Dragon, HC-256/128, NLS, and Sosemanuk have to be analysed.

Design Technique 1:

Do not use table lookups in a cryptographic design at all.

In the following: Design techniques where technique 1 is not applicable.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 18 / 30



Analysing eStream Candidates Obstacles to Analysis

Work in Progress...

Expectation: When starting analysis in the above (generous) model,
we expected most eStream candidates to break down completely.

Surprise: Most candidates seem to withstand analysis even in the
generous model surprisingly well (not unbreakable, but complicated).

Work on cryptanalyis is still in progress.

Here: Discuss some of the obstacles encountered, and possible
consequences for algorithm design.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 19 / 30



Analysing eStream Candidates Obstacles to Analysis

From Cache Block Access to Inner State (1)

Example: Dragon

2 S-Boxes (8× 32 bit), each of which fills 16 cache blocks (Pentium
4).

In each call to the keystream generation function, each S-box is called
12 times.

Problems:

For each S-Box, up to 12 out of 16 cache blocks are accessed (on
average: 8.6).
⇒ Less information than we hoped for.

It is unclear in which order those cache blocks were accessed. If a full
12 different blocks were accessed for both S-boxes, there would be
257.7 possible ways of ordering them.
⇒ Without algebraic tools, a lot of guessing + verifying is necessary.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 20 / 30



Analysing eStream Candidates Obstacles to Analysis

From Cache Block Access to Inner State (2)

Observation:
Similar problems occurred for other stream ciphers, too.

Design Technique 2:

For each function call, call many different table entries, in order

to reduce the amount of information obtained and

to make ordering of the cache accesses difficult.

Note that if all table entries are called at least once, no cache timing infor-
mation can be obtained.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 21 / 30



Analysing eStream Candidates Obstacles to Analysis

Inner State Size (1)

For protection against Time-Memory-Data tradeoff attacks, inner state
size has to be at least twice the key size (i.e., 512 bit for 256-bit keys).

Cipher Key Size Inner State (bit)

Dragon 256 1,088

HC-128 128 32,768
HC-256 256 65,536

LEX-128 128 256

NLS 128 576

Sosemanuk 128 384

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 22 / 30



Analysing eStream Candidates Obstacles to Analysis

Inner State Size (2)

Example: HC-256

The inner state size is 65, 536 bit.

Each call to the keystream generation function gives

5 table accesses, which ultimately give us 52 bit of information, and
1 output word, giving 32 bit of information.

In order to obtain sufficient information to even theoretically solve for
the inner state, we need 65, 536/84 ≈ 780 precise cache access
measurements (or many more noisy ones).

Design Technique 3:

Make the inner state large compared to the information that can be obtained
from one cache access measurement. In addition, make the connection
between key / IV and inner state as complex as possible, to avoid easy
relations between key and cache access measurements.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 23 / 30



Analysing eStream Candidates Obstacles to Analysis

The LSB Problem (1)

Remember that we only can observe cache blocks that have been
accessed, which is not the same as table indices.

Example:

Pentium 4 L1-Cache holds 64 byte per cache block.

Often, tables have entry sizes of 32 bit (4 byte).

Each cache block holds 64/4 = 16 table entries.

⇒ If table entries are aligned with cache blocks, we can not say anything
about the 4 least significant bits of the table index!

This typically gives us a number of bits for some inner state words, but not
the lowest bits.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 24 / 30



Analysing eStream Candidates Obstacles to Analysis

The LSB Problem (2)

Example: HC-256
For one internal equation, known bits are marked green, while unknown
information is marked red.

Without carry, we could verify guesses for γ1, . . . , γ4 (guess 16 bit, verify
16 bit). But the carry introduces another 8 unknown bits, which
complicate the equation.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 25 / 30



Analysing eStream Candidates Obstacles to Analysis

The LSB Problem (3)

Observation:
Similar problems occurred in other places and for other stream ciphers, too.

Design Technique 4:

Introduce diffusion when combining inner state words, e.g. by using opera-
tions like addition and multiplication.
Do not rely solely on S-boxes for the diffusion.

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 26 / 30



Analysing eStream Candidates Obstacles to Analysis

Practical Issues

Reminder:
Remember that our model is a simplification. In the real world, the
adversary may not be able to

observe every encryption operation,

get a precise list of cache block accesses,

choose the IV, or

observe the keystream.

This means that cryptanalytic results obtained in this model are not
necessarily attacks in the real world.

But: As with all other design criteria in cryptography, the designer should
not rely on things that the adversary might not be able to do!

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 27 / 30



Analysing eStream Candidates Some Questions

A Puzzling Question

With the exception of Salsa, the eStream finalists were not designed
to resist cache timing attacks.

In addition, the attack model is very generous to the adversary.

Nonetheless, they seem to withstand an attack where the adversary
learns a lot about the inner state surprisingly well.

Why?

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 28 / 30



Analysing eStream Candidates Some Questions

Explanation Attempts

Is it really just the protection measures against bit guessing that save
us here?

Could it be that the stream ciphers are overdesigned (⇔ AES)?
In this case, what efficiency gains would be possible?

Or could it be that our cryptanalytical toolbox is rather empty when
we do not have huge amounts of (known or chosen) data available?

Are there really no tools for analysing elementary combinations of xor,
addition, and shift?
Could we have developed better tools if we were not content with
distinguishing attacks requiring 270 known plaintext words?
How would we proceed if we really needed to break a cipher in a
practical sense? In other words: How do agencies work?

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 29 / 30



Analysing eStream Candidates Some Questions

Thank you
for your

attention!

Erik Zenner (DTU-MAT) Cache Timing Attacks on eStream Finalists Echternach, Jan. 9, 2008 30 / 30


	Cache Timing Attacks
	Basics
	The AES Case
	Comments

	Analysing eStream Candidates
	Model for Analysis
	Candidates
	Obstacles to Analysis
	Some Questions


