
Why IV Setup for Stream Ciphers is Difficult

Erik Zenner
Technical University of Denmark∗

e.zenner@mat.dtu.dk

March 14, 2007

Abstract

In recent years, the initialization vector (IV) setup has proven to be
the most vulnerable point when designing secure stream ciphers. In this
paper, we take a look at possible reasons why this is the case, identifying
numerous open research problems in cryptography.

1 Introduction

Motivation: Traditionally, a cipher was defined as an algorithm that trans-
forms a message into a ciphertext under the control of a secret key (see, e.g.,
[20, 25]). Stream ciphers were no exception to this rule. In recent years, how-
ever, an additional input parameter has gained in importance: the initialization
vector (IV). As opposed to the key, the IV is public, and a new IV is used for each
new message. The IV has two main uses: It provides randomized encryption,
and it helps in synchronizing communication between sender and receiver.

As it turns out, however, incorporating an IV into a stream cipher is not an
easy task. An important reason for this is that the IV is an input parameter
which is partially under the control of the adversary [23]. Giving the adversary
control over an input parameter significantly increases the range of attacks he
has available. As an example, think of a block cipher adversary who is restricted
to a known-plaintext scenario, as opposed to a block cipher adversary who also
has chosen plaintext or chosen ciphertext at his disposal.

As a consequence, attacks against the IV setup of stream ciphers have been
very successful recently:

• Out of the 34 stream ciphers submitted to the eStream project [12] in May
2005, 10 were broken due to problems in the IV setup by December 2006
(see, e.g., [7, 31, 32]). This is more than 25% of all submissions.

∗This paper accompanies a talk given at the Dagstuhl Seminar on “Symmetric Cryptogra-
phy” on January 11, 2007. At the time of the talk, the author’s affiliation was Cryptico A/S,
Copenhagen.

1



• Examples for seemingly strong academical designs that were broken due
to problems with the IV setup are Turing [17] and Helix [21].

• Notable examples for fielded stream ciphers that were broken due to prob-
lems with the IV setup are the GSM standard [11] and some implementa-
tions of the WEP standard [14].

Thus, it seems that we need a better understanding of what the IV setup is
supposed to achieve, and how those goals can be met.

Engineering approach: When designing an object (not necessarily a cryp-
tographic one), a sensible approach is to first define its intended properties, then
to look for prior knowledge on similar objects, and only then to build it. If we
apply this approach to the design of an IV setup for stream ciphers, then we
have to start by asking ourselves what it is that we want to achieve (security
requirements), continue by learning as much as possible from past experiences
(construction principles), and then start the actual design process.

However, as mentioned above, our knowledge about an IV setup as such is
currently limited. If we do not want to start from scratch, it makes sense to look
into related fields within cryptography. An obvious starting point is to consider
the security requirements and construction principles for related objects. If we
find anything useful there, we have to adapt our findings to the stream cipher
setting. In order to do this, we have to be aware of the security requirements
for the stream cipher (as a whole, as opposed to security requirements for the
IV setup only). And finally, in order to define properties for a stream cipher,
we have to agree first what a stream cipher is.

The rest of this paper deals with those questions, in reverse order.

Purpose: This paper is not about the outcome, but about the start of a
research project. As a consequence, its purpose is to collect initial ideas and
research questions. The reader is welcome to work on the questions asked. The
author will be grateful for any pointers, both to prior art that is missing in this
paper and to new research done after the paper was published.

2 What is a stream cipher?

2.1 Universal Secure Encryption (USE) Schemes

Introduction: Before we consider an IV setup for stream ciphers, we first
have to be clear about what a stream cipher is. In fact, it turns out that
definitions given by both researchers and practitioners are misleading. Let us
start by quoting the (anonymized) chief security architect of one of the world’s
largest companies. The following statement was made in e-mail communication
in Summer 2005:

2



“Stream ciphers are always faster than block ciphers [...] but are
considered much easier to break because of problems with the key
handling and the pseudo nature of the number generators.”

Statements like those are wide-spread amongst practitioners and are moti-
vated mainly by the security breaks against fielded systems in e.g. WEP and
GSM. But are they correct? As cryptographers, we observe that this statement
actually compares apples with oranges, since a stream cipher is used for encryp-
tion, while a (raw) block cipher is not. Block ciphers are always used in a mode
of operation, and those require key and IV handling, too.

In fact, practitioners do not care much about the internals of an encryption
algorithm. They do not care about the differences between block and stream
ciphers. They might not even be aware that there is a distinction between a
“cipher” and a “secure cipher”. All they care about is a universal encryption
algorithm that can process all kinds of input and that encrypts and decrypts in
a secure way. This leads us to the following, informal definition of what really
is required for practical use:

Definition 1 A universal secure encryption (USE) scheme is a cipher
with the additional properties that (a) it can process messages of arbitrary bit
length and (b) it is secure.

Note that the definition of a USE scheme is not identical to the standard
textbook definition of a cipher or even a secure cipher. In particular, a block
cipher can not be a USE scheme since it does not process messages of arbitrary
length.

Bellare and Rogaway’s definition: Searching the cryptographic literature
for a matching definition, the one given by Bellare and Rogaway in [3], p. 93,
comes close. Here, a symmetric encryption scheme consists of the following
components:

• A randomized key generation algorithm.

• A randomized or stateful encryption algorithm processing messages of
arbitrary length.

• A deterministic decryption algorithm.

Such a symmetric encryption scheme is considered secure ([3], pp. 102-103) if no
adversary with realistic restrictions for time and hardware can win the following
game with a non-negligible advantage (IND-CPA security):

• The adversary chooses pairs of messages from {0, 1}∗ (each pair having
equal length) and sends them to the encryption oracle.

• The oracle is either an L- or an R-oracle. An L-oracle encrypts the first,
an R-oracle the second message.

3



• The adversary wins if he can tell whether he communicates with an L- or
an R-oracle.

Given these notions of symmetric encryption scheme and security, the fol-
lowing corollary can be proven ([3], pp. 107-108):

Corollary 1 Any deterministic, stateless symmetric encryption scheme is in-
secure.

Since a secure symmetric encryption scheme is identical to our notion of a
USE scheme, we conclude that all USE schemes require initialization vectors -
either for randomization or to remember the last state. A further consequence is
that block ciphers in ECB mode are not USE schemes. This begs the question
of whether or not stream ciphers are USE schemes. But in order to give a
meaningful answer to this question, we first have to give a definition of a stream
cipher.

2.2 Stream cipher definitions

Even though stream ciphers are considered as the opposite of block ciphers, they
do nonetheless process plaintext and ciphertext in blocks of b bit. The classical
(hardware-based) stream ciphers operated on individual bits, meaning b = 1,
while modern (software-based) stream ciphers often use larger blocks like b = 8,
b = 32 or even b = 256.

Narrow definition: The following definition covers a very narrow under-
standing of a stream cipher that is frequently used by practitioners.

Definition 2 Let b be the block length of the stream cipher. Let ⊕ denote bitwise
exclusive-or operation (aka. addition over GF(2b)). Then a stream cipher works
as follows:

• A pseudo-random generator (PRG) expands a short key and initialization
vector (IV) into a long pseudo-random keystream, consisting of b-bit words
s0, s1, . . ..

• The plaintext is subdivided into b-bit blocks m0,m1, . . . ,ml−1. It is en-
crypted by computing b-bit ciphertext blocks ci = mi⊕si, for i = 0, . . . , l−1.

• Analoguously, the ciphertext is decrypted by reconstructing the message as
mi = ci ⊕ si, for i = 0, . . . , l − 1.

The obvious problem with this definition is that it does not cover some
of the designs that are also considered as stream ciphers, as for example self-
synchronizing stream ciphers (like the eStream candidate Moscito/Moustique
[9]) or stream ciphers with authentication (like the eStream candidate Phelix
[29]), where the inner state of the PRG depends not only on the key and IV,
but also on the plaintext. Thus, we either have to consider these ciphers as not
being stream ciphers, or we have to use a broader stream cipher definition.

4



Broad definition: A broader definition was given by Rueppel [24] and is
used, e.g., in the “Handbook of Applied Cryptography” [20]. The Handbook
describes the difference between block and stream ciphers as follows:

Stream ciphers [...] encrypt individual characters [...] of a plain-
text message one at a time, using an encryption transformation
which varies with time. By contrast, block ciphers [...] tend to
simultaneously encrypt groups of characters of a plaintext message
using a fixed encryption transformation.

It is obvious that the difference between encrypting “individual characters”
and “groups of characters” is meaningless in practice, since it depends com-
pletely on how a character is defined. In practice, both stream and block ci-
phers operate on b-bit blocks, with b depending on the cipher itself and typically
being in the range between 64 and 256 bit for block ciphers and 1 and 256 bit
for stream ciphers.

The remaining characteristic of a stream cipher according to Rueppel is thus
that it transforms plaintext blocks into ciphertext blocks in a time-varying fash-
ion. This means that even if the same plaintext block occurs twice in a message,
the corresponding ciphertext blocks will not necessarily be the same. With other
words, there must exist a method of preserving an inner state between the pro-
cessing of two plaintext blocks, either by re-initializing the state with an IV or
by storing the state itself.

Remembering our observations on USE schemes, we find that it was a nec-
essary condition for USE schems to use either randomization or to store the
inner state. While this does not imply that all stream ciphers are USE schemes,
it does imply that all USE schemes are stream ciphers according to Rueppel’s
definition!

Conclusion: It seems that we can not find a useful definition for a stream
cipher in the literature. The narrow definition does not cover all designs cur-
rently denoted as stream ciphers in the cryptographic community, while the
broad definition covers all secure encryption schemes.

It was pointed out by Bart Preneel during the Dagstuhl seminar talk that a
rigorous definition might not be needed in practice. As an example, he stated
that program committees typically do not have a problem with placing sub-
missions into the “stream cipher” or the “block cipher” category. But this
placement seems to be based mainly on intuition, and it can be ambivalent1.
In addition, placing ciphers into conference sessions is not the only purpose of
such a categorization.

Practitioners get confused by unclear nomenclature, since they use such
categories to pre-select which cipher to use. If some algorithms in a category

1As an example, does a contribution on counter mode encryption belong into the block
cipher or into the stream cipher category? If it is placed in the block cipher category, then a
cipher like Salsa20 [5] should be placed in the hash function category for the same reasons.
On the other hand, if it is placed in the stream cipher category, then what about CBC mode
encryption?

5



fail, then people without in-depth knowledge will consider the whole category to
be unsuitable to their purposes. And if the labels are chosen sloppily, then they
might end up making the wrong choice. This is the case with block and stream
ciphers: The Chief Security Architect mentioned in Subsection 2.1 heard bad
things about stream ciphers, so she chose to use block ciphers instead, which
does not make her choice one bit more secure. Quite the opposite: If she uses a
block cipher in counter mode, she ends up having exactly the same IV problem
that she wanted to avoid before. She is not even aware that depending on the
interpretation of the term “stream cipher”, some or all block cipher modes of
operation are stream ciphers, making even a technically more correct statement
like “stream ciphers are less secure than block cipher based encryption schemes”
meaningless.

3 Stream cipher model

3.1 Stream cipher definition

Additive stream cipher: Returning to our original intention of designing
an IV setup for a stream cipher, we choose to restrict our concept of a stream
cipher as much as possible in order to make meaningful statements. Thus,
we will subsequently use the narrow definition, which is sometimes denoted as
additive stream cipher. In the following, our stream cipher consists of a pseudo-
random generator (PRG) which expands key and IV into a keystream. This
keystream is then xored to the message in order to encrypt, and to the ciphertext
in order to decrypt. The principle is described in Figure 1.

Figure 1: PRG-based stream cipher

Construction principle: Pseudo-random generators have been discussed in
cryptographic literature in many years, and they are relatively well understood.
Traditionally, the initial inner state of the PRG was considered as the key. A
function f updates the inner state between two iterations, and a function g
generates a number of output bits from the inner state. The illustration in part
(a) of Figure 2 illustrates the principle.

6



The problem with this kind of generator is that in order to serve as stream
cipher, it lacks key/IV setup. Thus, we need an additional component that
mixes the key and initialization vector into the initial state of the PRG, as
illustrated in part (b) of Figure 2.

(a) Traditional PRG (b) PRG with key/IV setup

Figure 2: Pseudo-random generator for stream ciphers

It is the new “key/IV setup” component that gives rise to the problems with
modern stream ciphers. We know that the key and IV have to be mixed into the
inner state, but how? Both security requirements and construction principles
are not well understood. Thus, in Section 4, we will look at related building
blocks in order to find inspiration.

3.2 Stream cipher security

Security definition: Before we can identify meaningful security criteria for
the key/IV setup, we have to review the security requirements for a stream
cipher as a whole. To this purpose, we use the IND-CPA security definition that
was described in Subsection 2.1. In addition, we follow the recommendation by
Rogaway [23] who proposes to explicitly give the adversary control over the IV.
This means that in addition to choosing messages (which is not an advantage
in our narrow stream cipher model), the adversary also is allowed to choose the
IV that is used for the encryption, as long as he does not request the same IV
twice (nonce-respecting adversary).

Possible extensions: A number of possible extensions to this model have
implicitly been proposed in recent years:

• In 2005, Hong and Sarkar [15] proposed a multiple-key attack model. In
this model, the adversary attacks a system where the same encryption al-
gorithm is used under several keys. He is already considered successful if he
can achieve his goal for any one key that is being used. In addition, Hong

7



and Sarkar presume that the adversary has unlimited pre-computation
time at his disposal and that the only thing that prevents him from pre-
computing the whole key/IV space is lack of memory. There is currently
no unanimous agreement regarding whether or not this model should be
considered valid or not.

• In 2006, Wu and Preneel [30] proposed an attack against Phelix that
was based on re-using the initialization vector. With other words, the
adversary in this model is no longer nonce-respecting. This attack model
was met by strong opposition by some cryptographers, notably Bernstein
[13, 19], who state that if the users do not follow precautions necessary
to use an algorithm, then the algorithm can hardly be considered broken.
As an example, all additive stream ciphers are broken under the above
security definition if the adversary is not nonce-respecting.

Since these new attack models are disputed, we do not take them into consid-
eration here, but name them merely to illustrate that the choice we made was
just one out of several possible ones, and that no security model exists that the
cryptographic community agrees with unanimously.

4 Key/IV setup for stream ciphers

4.1 Modelling the key/IV setup

After clarifying the nature of a stream cipher and the security requirements, we
can return to our main goal of making statements about the IV setup of stream
ciphers. We start by repeating the question about the security requirements for
a key/IV setup.

From our definitions for a stream cipher and its security, we can informally
conclude that a stream cipher is secure if the adversary is unable to win the
following (informal) game:

• He sends pairs (IV, n) to an oracle and receives a bitstream of length n
in reply.

• He wins if he can tell whether the bitstreams were generated by the stream
cipher or whether they are random.

The stream cipher is considered secure if no adversary (with realistic resource
restrictions) has a non-negligible chance of winning this game.

Let us assume now that the PRG part of the stream cipher is secure (and
has a sufficient security level). In this case, a sufficient condition for the overall
security is that the output of the key / IV setup (i.e., the initial state) can
not be distinguished from random. This requirement forms a starting point in
looking for design principles for a key/IV setup. In the following, we try to
borrow inspiration from related cryptographic primitives and look for suitable
building blocks, their definitions, construction principles, and efficiency.

8



4.2 First idea: Hash function

Intuition: Informally, a hash function maps an input of arbitrary length onto
an output of fixed length in such a way that the output “looks random”. In
fact, if the output of a hash function can not be distinguished from random,
then this hash function would solve our problem.

Definition: The problem is that no known formalization describes the “looks
random” property correctly. Originally, hash functions were supposed to pro-
vide the properties of one-wayness, second preimage resistance, and collision
resistance. None of those properties corresponds to the requirement that the
output should be indistinguishable from random.

Hash functions are sometimes also used as instantiations of random oracles
[2]. This model could be used for our purposes, but even though it might be
correct in practice, it can be shown in theory that no instantiations of random
oracles can exist [6]. In addition, usefulness as a random oracle is not a design
goal of hash functions, but rather a byproduct. Thus, there is no unanimous
agreement for the claim that hash functions produce output that is indistin-
guishable from random.

Construction principles: Most modern hash functions are based on the so-
called Merkle-Damgaard (MD) paradigm (see e.g. [25], pp. 131-137). However,
the recent attacks on the most prominent hash functions like MD5 and SHA-1
[28, 27] as well as generic attacks against the MD construction [16] have shown
that this paradigm has its weaknesses. In fact, at the NIST workshop on hash
functions in 2006, leading experts in the field agreed that our understanding of
construction principles for hash functions is incomplete [22]. Major research in
this area is expected, meaning that it might in fact be dangerous to rely on hash
functions for constructing our key/IV setup at the moment2.

Efficiency: In addition, general-purpose hash functions have the disadvantage
that they might be more inefficient than required for our purposes. The reason
for this is twofold:

• As opposed to a key/IV setup, a hash function does not require a key.
Since all of their input is known to the adversary, the resulting construction
has to be stronger than a similar construction using a key. This implies
that it might be possible to build a dedicated key/IV setup that is more
efficient than modern hash functions.

• While a key/IV setup typically processes less than 1000 bit of input, a
hash function is designed to process inputs of arbitrary length. Again,

2For completeness sake, we mention that most attacks currently proposed against hash
functions might in fact have no relevance in a scenario where the hash function is used as
key/IV setup. However, this only serves to show that hash functions try to achieve security
properties that are quite different from those of a key/IV setup.

9



this means that dedicated hash functions have an overhead for handling
long messages and for preventing length-extension attacks that might not
be required in our case.

Thus, the efficiency of a hash function might be suboptimal in our case, and
dedicated constructions might be more efficient.

4.3 Second idea: Key derivation function

Intuition: A key derivation function (KDF) takes an input that has a secret
and a public part and generates an output that can be used as a key (e.g. for
a PRG). Since this output should be indistinguishable from random, a KDF
might solve our problem.

Definition: As it turns out, our understanding of what a KDF actually is is
even more vague than for a hash function. A long discussion on CFRG mailing
list [18] in 2005 showed that most researchers have an intuition of what a KDF
is, but that a definite definition is lacking. It seems likely, though, that if the
public and the secret part of the KDF input are cleanly separated3, then the
definition might be identical to that of a secure pseudo-random function (see
below).

Construction principles: There are only few designs for dedicated KDFs.
In fact, most KDFs in the literature (see e.g. [1] and the references contained
therein) are built on hash functions or block ciphers, meaning that they are not
sufficiently efficient for use with fast or compact stream ciphers.

4.4 Third idea: Pseudo-random function

Intuition: Intuitively, a pseudo-random function (PRF) maps a public input
under a secret key onto an output that “looks random”. Again, this might be
a solution to our problem.

Definition: As opposed to hash functions and KDFs, PRFs have a well-
understood security definition (see e.g. [3], pp. 64-67). This definition contains
all the components that we are interested in: A public input (the IV), a se-
cret input (the key), and an output that can not be distinguished from random
(the initial state). This means that we can solve the problem by modelling the
key/IV setup as a PRF. What is more, as opposed to hash functions and KDFs,
this is even the theoretically most accurate description of our problem.

3As opposed to, e.g., a KDF that takes as input the output of a Diffie-Hellman key exchange
[10] (containing a certain redundancy which is considered as the “public” part [26]) and
transforms it into a shorter value with full entropy.

10



Construction principles: The main problem is that there are almost no
dedicated PRFs proposed in the literature4 In principle, message authentication
codes (MACs) can be used, but there is a subtle theoretical difference between
a MAC and a PRF (see e.g. [3], pp. 167-168), and the output lengths might
not be what we are looking for. Nonetheless, the design principles of dedicated
PRFs and MACs currently seem to be the best starting point when we want to
learn something about construction principles for key/IV setup.

Efficiency: As with hash functions, existing PRFs might be more complicated
than required for a key/IV setup. This can be seen from the fact that the
majority of existing key/IV setup functions (even those that are unbroken) are
too weak for a PRF. This indicates that random indistinguishability of the initial
state is a sufficient, but might not be a necessary criterion for a key/IV setup
function.

4.5 Outlook

Thus, of the related primitives considered, the pseudo-random function (PRF)
seems to be most suited as inspiration for a key/IV setup. However, it also
seems that a really efficient key/IV setup can be built to be more efficient than
a PRF. But in order to do this, the designer will have to take the properties
of the PRG into account - the stronger the PRG, the weaker the key/IV setup
can be allowed to be. This was also pointed out by participants of the seminar,
notably Henri Gilbert and Greg Rose. As an example, the key/IV setup of
the block cipher counter mode consists in just writing the key and IV into the
correct locations in memory. Of course, the resulting initial state can easily be
distinguished from random, but nonetheless, the block cipher counter mode is
considered secure. The same holds for the Salsa20 stream cipher [5], which uses
a hash function in counter mode. This dependency between the strength of the
key/IV setup and the PRG makes design and analysis of an efficient and secure
stream cipher considerably more complicated.

5 Conclusions

Trying to design a key/IV setup for stream ciphers has taken us into a number
of realms of cryptography that are not well-understood. As it turns out:

• There is no useful definition of a stream cipher.

• Even for a narrow definition of a stream cipher, cryptographers do not
agree on what constitutes a valid attack.

• Even for a narrow definition of an attack, it is unclear what the key/IV
setup is supposed to achieve.

4At the Dagstuhl seminar, Joan Daemen pointed out that Panama [8] was an example for
such a dedicated PRF.

11



• Related building blocks that could be considered as candidate key/IV
setup or as inspiration (namely hash functions, KDFs, and PRFs) have at
least one of the following problems:

– The security definition is unclear.

– Wide-spread constructions are again based on other primitives (no-
tably block ciphers); no dedicated constructions exist.

– Existing dedicated constructions are insecure.

Considering that not only key/IV setup of stream ciphers, but also almost all
related areas of research are not as well understood as one might hope, it is
not that surprising that designing a stream cipher IV setup has proven to be
difficult in the past.

Acknowledgements

The author wishes to thank all participants in the Dagstuhl seminar on Sym-
metric Cryptography for the lively discussions and many pointers.

The author also wishes to mention a paper by Berbain and Gilbert that will
be presented at FSE 2007 and that touches on some of the issues mentioned
in this article. This paper [4] was not publicly available by the time of the
Dagstuhl seminar yet.

References

[1] C. Adams, G. Kramer, S. Mister, and R. Zuccherato. On the security of
key derivation functions. In K. Zhang and Y. Zheng, editors, Proc. ISC
2004, volume 3225 of LNCS, pages 134–145. Springer, 2004.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Proc. of First Annual Conference on
Computer and Communications Security, pages 62–73. ACM, 1993.

[3] M. Bellare and P. Rogaway. Introduction to modern cryptography.
http://www.cs.ucdavis.edu/˜rogaway/classes/227/spring05/book/main.pdf,
May 2005.

[4] C. Berbain and H. Gilbert. On the security of IV dependent stream ciphers.
In Proc. FSE 2007, LNCS. Springer. to appear.

[5] D. Bernstein. Salsa20 specification.
http://www.ecrypt.eu.org/stream/salsa20.html, 2005.

[6] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In Proc. 30th STOC, pages 209–218. ACM, 1998.

12



[7] C. Cid, H. Gilbert, and T. Johansson. Cryptanalysis of Pomaranch. IEE
Proc. Information Security, 153(2):51–53, June 2006.

[8] J. Daemen and C. Clapp. Fast hashing and stream encryption with
Panama. In S. Vaudenay, editor, Proc. FSE ’98, volume 1372 of LNCS,
pages 60–74. Springer, 1998.

[9] J. Daemen and P. Kitsos. The self-synchronizing stream cipher Mous-
tique.
http://www.ecrypt.eu.org/stream/ciphers/mosquito/mosquito p2.pdf,
2006.

[10] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Information Theory, IT-22(6):644–654, 1976.

[11] P. Ekdahl and T. Johansson. Another attack on A5/1. IEEE Trans. In-
formation Theory, 49(1):284–289, 2003.

[12] eStream - the ECRYPT stream cipher project.
http://www.ecrypt.eu.org/stream/.

[13] Phorum eStream. Key recovery attacks on Phelix.
http://www.ecrypt.eu.org/stream/phorum/read.php?1,883,921, 2006.

[14] S. Fluhrer, I. Mantin, and A. Shamir. Weaknesses in the key scheduling
algorithm of RC4. In A. Youssef S. Vaudenay, editor, Proc. SAC 2001,
volume 2259 of LNCS, pages 1–24. Springer, 2001.

[15] J. Hong and P. Sarkar. New applications of time memory data tradeoffs. In
B. Roy, editor, Proc. Asiacrypt 2005, volume 3788 of LNCS, pages 353–372.
Springer, 2005.

[16] A. Joux. Multicollisions in iterated hash functions - applications to cas-
caded constructions. In M. Franklin, editor, Proc. Crypto 2004, volume
3152 of LNCS, pages 306–316, Berlin, 2004.

[17] A. Joux and F. Muller. A chosen IV attack against Turing. In M. Matsui
and R. Zuccherato, editors, Proc. SAC 2003, volume 3006 of LNCS, pages
194–207. Springer, 2004.

[18] Cfrg Mailing List. Fwd: Hash-based key derivation.
http://www1.ietf.org/mail-archive/web/cfrg/, October 2005.

[19] Cfrg Mailing List. Consequences of nonce reuse.
http://www1.ietf.org/mail-archive/web/cfrg/, January 2007.

[20] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1997.

13



[21] F. Muller. Differential attacks against the Helix stream cipher. In B. Roy
and W. Meier, editors, Proc. FSE 2004, volume 3017 of LNCS, pages 94–
108. Springer, 2004.

[22] J. Nechvatal and S. Chang. Workshop record: The second cryptographic
hash workshop. available from:
http://www.csrc.nist.gov/pki/HashWorkshop/, August 2006.

[23] P. Rogaway. Nonce-based symmetric encryption. In B. Roy and W. Meier,
editors, Proc. FSE 2004, volume 3017 of LNCS, pages 348–359. Springer,
2004.

[24] R. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.

[25] D. Stinson. Cryptography - Theory and Practice. Chapman and Hall, 3rd
edition, 2006.

[26] C. Waldvogel and J. Massey. The probability distribution of the Diffie-
Hellman key. In J. Seberry and Y. Zheng, editors, Proc. Asiacrypt ’92,
volume 718 of LNCS, pages 492–504, Berlin, 1993. Springer.

[27] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In
V. Shoup, editor, Proc. Crypto 2005, volume 3621 of LNCS, pages 17–36,
Berlin, 2005. Springer.

[28] X. Wang and H. Yu. How to break MD5 and other hash functions. In
R. Cramer, editor, Proc. Eurocrypt 2005, volume 3494 of LNCS, pages
36–57, Berlin, 2005. Springer.

[29] D. Whiting, B. Schneier, S. Lucks, and F. Muller. Phelix - fast encryption
and authentication in a single cryptographic primitive.
http://www.ecrypt.eu.org/stream/ciphers/phelix/phelix.pdf, 2005.

[30] H. Wu and B. Preneel. Differential-linear attacks against the stream cipher
Phelix. In Proc. FSE 2007, LNCS. Springer. to appear.

[31] H. Wu and B. Preneel. Cryptanalysis of the stream cipher DECIM. In
M. Robshaw, editor, Proc. FSE 2006, volume 4047 of LNCS, pages 30–40.
Springer, 2006.

[32] H. Wu and B. Preneel. Resynchronization attacks on WG and LEX. In
M. Robshaw, editor, Proc. FSE 2006, volume 4047 of LNCS, pages 422–432.
Springer, 2006.

14


