
Stream Cipher Criteria

Erik Zenner

CRYPTICO A/S
info@cryptico.com

Abstract. The eStream project has given us a number of insights into
design criteria for stream ciphers. Some of them were disputed, on others
everyone seemed to agree. This text tries to collect these criteria into one
comprehensive document and gives the author’s views on their relevance
for stream cipher design. It does not contain any groundbreaking new
results; it is merely meant as a collection of ideas and an incentive for
further discussion.

1 Preliminary remarks

1.1 Stream ciphers are bleeding-edge technology

On several occasions, the question was asked why the development of a (dedi-
cated) stream cipher is necessary. After all, there exists a cryptographic standard
AES whose security has been thoroughly scrutinized and that is sufficiently ef-
ficient both in hardware and software on most platforms. Using simple modes
of operations, AES itself can be turned into a stream cipher. So why develop a
dedicated stream cipher at all?

The answer is that dedicated stream ciphers can be designed such that
they are even more efficient, since they are less universal cryptographic build-
ing blocks. In order to outweigh the advantages of AES in terms of analysis,
standardization, and availability, stream ciphers have to provide a significant

advantage on at least one platform. Being slightly better just is not enough to
justify the extra effort on the end user’s side.

Another consequence is that stream ciphers do not necessarily have to be
perfect on all platforms and in all situations. There may, e.g., be room for a
cipher that is secure only if less than 220 output bits are encrypted. However,
this restriction has to be clearly stated in the documentation. Whether such a
special-purpose cipher should be recommended by eStream should become an
issue of public discussion.

1.2 Stream ciphers are not pseudorandom generators

A widespread misconception is the confusion between a stream cipher and a
pseudorandom generator (PRG). Many stream cipher designs (including the
majority of those submitted to eStream) are based on PRGs, but that does
not mean that they are identical. The task of a PRG is to expand a seed value



into an output stream that is indistinguishable from random. On the other hand,
a stream cipher transforms a message, key, and initialization vector (IV) into an
output stream in such a way that the output stream can not be distinguished
from random under a variety of attack scenarios, including known or chosen mes-
sage, known or chosen IV, multiple keys, or related keys. A stream cipher is thus
a more complex cryptographic building block than a pseudorandom generator.

However, many stream ciphers can be used as PRGs by setting the message
and IV to zero. When proposing a stream cipher for widespread use, one has
to be aware that it will most likely be used as a PRG. This should not have
any security implications, since breaking the resulting PRG would immediately
indicate a break of the stream cipher in a chosen-message, chosen-IV scenario.
There are, however, implications with regards to the performance, as will be
discussed below.

2 Security

2.1 Long key streams

A recurring question concerns the amount of data required to attack a stream
cipher. The validity of an distinguishing attack against the cipher SNOW 1.0
that required 295 words of known plaintext and ciphertext was questioned by
Rose and Hawkes in [5]. In the SASC 2006 discussion, it was pointed out that
the biggest applications run today operate on Terabyte (240 - 250 bytes), and
even then it seems questionable whether all this data would be encrypted under
the same IV.

For most 128-bit block cipher modes of operation, distinguishing attacks
become possible after roughly 264 output blocks, and this is not considered to
be a problem in practice. If such a gigantic amount of data would ever be reached,
all that would be necessary would be the use of a new IV. Given that dedicated
stream ciphers are considered bleeding-edge technology, it seems only reasonable
to allow for similar restrictions on the use of stream ciphers.

However, the authors of a cipher should always document the maximum
amount of data that may be encrypted before a new IV should be used. If this
was done, an attack that requires more than the maximum amount of data
should not be considered as a break, but as an indication of the security margin
that is left until a break becomes possible.

2.2 Special kinds of attacks

Once in a while, the question is raised whether or not distinguishing attacks, side-
channel attacks, multiple-key attacks, related-key attacks etc. are relevant. The
answer to this question depends indeed completely on the application scenario.
There may exist situations where a distinguishing attack will not reveal anything
useful, where a side-channel attack is not possible etc.

However, if only a small portfolio of ciphers is to be recommended by eStream,
then these ciphers should be as universal as possible. A list of usage restrictions



would not only reduce the usefulness of the recommendation, it would also in-
duce an additional risk that ciphers are not used in the proper way. Besides, it
may turn out to be difficult to state the usage restrictions in an unambiguous
manner1.

2.3 Key and IV sizes

For the eStream project, two profiles are considered:

1. Profile 1 ciphers are targeted at software platforms and provide a security
level of 128 bit or 256 bit.

2. Profile 2 ciphers are targeted at hardware platforms and provide a security
level of 80 bit.

The actual call for contributions requests key lengths of 80, 128, or 256 bit, but
as was observed by Bernstein in [2], the security level does not necessarily have
to correspond to the key length. Thus, we assume that the ciphers are indeed
supposed to provide security levels of 80, 128, or 256 bit. We will denote this
security level by L.

Required key lengths: According to the classical cryptographical paradigm for
stream ciphers, the key length should be equal to L. However, if attacks against
several keys at once are an issue, then Hong and Sarkar show in [4] that the
added lengths of the key and IV should be 2L.

If a stream cipher has a fixed key size of L, then the problem is propagated
to the IV size. However, the IV size depends strongly on the application at hand.
The IV length that can be used might be severely limited, e.g., by the amount
of payload a system can handle. In the most extreme case, no IV is to be used
at all. In this case, the problem is propagated to the key size.

Thus, a general-purpose stream cipher should be able accomodate key lengths
from L up to 2L. Where these requirements are not met, the usage restrictions
should be clearly documented.

Required IV lengths: For the same reasons as those given in the paragraph on
long key streams, it seems safe to assume that no more than 264 different IVs
are required before the key is exchanged.

However, as was pointed out by Zenner and Boesgaard in [6], a system that
uses random IVs (instead of counters) requires a much larger IV length, namely
128 bit, in order to avoid random collisions of IVs. Analoguously, a cipher in
profile 2 that uses no more than 232 IVs should in fact be able to support an IV
length of 64 bit.

1 Just try to define the usage restrictions implied by the fact that distinguishing
attacks were disregarded in the analysis. If perfect compression of the plaintext
existed, this seems possible. But since this is not the case, the usage restriction
depends both on (a) the plaintext entropy and on (b) the quality of the distinguishing
attacks involved. If (a) is determined by the application and research in (b) was
discouraged, no useful statement will be possible



Similar conclusions are obtained from the results by Hong and Sarkar [4] and
by de Cannière et al. [3]. If IVs are used to increase resistance against attacks
that target several keys, then IV lengths up to L should be accomodated by the
cipher. Again, if any of these options are not present, the limitations on cipher
use should be clearly documented.

3 Performance

3.1 Speed and Compactness

Independent of its actual security, it will be almost impossible for an eStream
candidate to obtain the same level of public trust that the block cipher standard
AES enjoys. Thus, if the cipher actually is to be used, it has to offer other
advantages. Typically, this means that it has to be faster (in software) or more
compact (in hardware).

From our experience, these advantages have to be significant. For most users,
the cipher decision is based on the fact that for products bases on AES, a wide
range of cheap software and hardware implementations are available, certification
is easy, and advertising as “using the standard” is possible2. No user will give up
these advantages lightly. Thus, we expect that for the profile under consideration,
a stream cipher recommended by eStream has to provide a clear advantage over
AES. Being just 20 percent faster or 20 percent more compact simply is not
going to be enough.

It is possible that a cipher offers other advantages than speed and compact-
ness. In this case, we strongly recommend that those are documented, clearly
answering the question why or in which situations the cipher in consideration
should be used instead of the AES.

3.2 Tradeoff between Throughput and State Size

When comparing software performance for the eStream candidates with their
inner state size, then we observe a tradeoff: The ciphers providing the highest
throughput rates tend to have rather large inner states3. The reason is roughly
that with large inner states, relatively little information about this state is leaked
with each output. This reduces the need for a strong inner mixing between
consecutive outputs; a principle that already underlied the RC4 cipher.

It is known that the inner state size has to be at least 2L in order to prevent
time-memory tradeoff attacks. In recent years, it turned out that ciphers not
using at least 4L usually got broken, but since no generic attack against such

2 Practice also shows that most users know a lot less about cryptography than any
cryptographer would dare to imagine. Explaining cryptographic properties to them
is typically futile. They will ask for the FIPS 140-2 certification, and they will not
even change their opinion when they learn that encryption algorithms can not be
certified under that standard.

3 Or to get broken. Or both.



designs exists, this may just have been a coincidence. Whether increasing the
throughput further at the expense of the inner states size is useful or not depends
on a number of factors:

– Large inner states require intensive key and IV setup. Large key setup times
can be tolerated by most applications, and they might even provide a few
extra bits of security against brute-force attacks. Large IV setup times, how-
ever, become a hindrance when switching to packet-by-packet encryption, as
is the case in most practical applications. This problem becomes worse the
shorter the packets to be encrypted are.

– Large inner states decrease key agility. If an application has to handle sev-
eral instances of the same cipher (e.g., a server that handles a lot of TLS
connections at once), then the time for loading and storing the inner state
of each instance becomes important.

– Large inner states are too costly for low-resource applications like embedded
processors and hardware implementations. For those applications, look-up
tables like e.g. S-boxes are also problematic.

– Large inner states can be problematic when a cipher is not used as stream
cipher, but as pseudo-random generator (PRG). There are applications of
PRGs that require a very frequent re-keying4. In such a case, the large inner
state turns out to be a significant disadvantage.

Again, we have to remember that stream ciphers are specialized technology:
Ciphers that use huge inner states to obtain extreme throughput rates may have
their value in some applications. If the cipher is to be used in a wide variety of
applications, however, smaller inner state sizes are recommended.

4 Last but not least: An appeal

The paradigm of scientific publishing dictates that only results that are better
than prior ones are to be presented on conferences or included in journals. How-
ever, the impact of this paradigm on evaluating the security of a stream cipher
(or a cryptographic building block in general) is a negative one. The default
attack on each cipher is brute force, and every attack that was tried and did not
improve over brute force is discarded.

As a result, everyone who analyses a cipher has to go through the same
steps again, and as a community, we still don’t know how many people in fact
did analyse a cipher and did not find a weakness. Even worse: Ciphers that
get broken and fixed repeatedly end up enjoying a higher level of trust than the
ones that never ever got broken, because we simply don’t have any results on the
unbroken ones. In the worst case, an author will exaggerate his/her non-attack

4 As an example, consider the robust PRG described by Barak and Halevi in [1]. If K

is the stream cipher’s key length, then it produces only K bits of output between
two key setups. It is possible to change the construction to be more efficient, but
then the whole proof of security has to be re-worked and re-verified again.



result such that it may sound like a break, damaging the reputation of a good
design simply because otherwise, he/she won’t get any academic credit.

We do propose to shift the paradigm from “Tell me something I couldn’t work

out myself” to “Tell me something I didn’t know”. Many cryptographers involved
in the eStream project have the skill to check all 35 stream cipher candidates
against a large number of standard attacks. But most of us definitely do not have
the time to do that. Thus, we should realize that a failed cryptographic attack
is also of significant importance to the community. It may not be publishable at
a scientific conference, but it should by all means be published at the eStream
web pages. Especially a project like eStream should be understood not only as
a science, but also as an engineering endeavour: We should start to talk not
only about the ingenious new ideas, but also about the routine jobs that are of
relevance to other participants.

5 Conclusions

In this paper, we have discussed a number of design criteria for stream ciphers.
In way of conclusion, we propose the following consequences for cipher design
and specifications that should be implemented during phase 2 of the eStream
project:

– It should be publicly discussed whether eStream aims at finding a stream
cipher, a PRG, or both.

– It should be publicly discussed whether special-purpose ciphers should also
be part of the eStream recommendations, or whether the recommended can-
didates should be as general as possible.

– For each candidate, it should be clearly stated by the authors in which
respect it offers an advantage over AES (counter mode), and how big this
advantage is.

– For each candidate, all usage restrictions (max. output length under one IV,
max. number of IVs under one key, max. number of keys, susceptibility to
side-channel attacks etc.) should be clearly stated by the authors.

– For ciphers not making special restrictions on their usability, both key setup
and IV setup should accomodate a key length of 2L and an IV length of L,
where L is the claimed security level.

– Cryptographers involved in the project should be encouraged to publish their
analysis results on eStream candidates on the project’s web pages, even if
the results only indicate resistance of the cipher against an attack.

References

1. B. Barak and S. Halevi. A model and architecture for pseudo-random generation
with applications to /dev/random.
http://eprint.iacr.org/2005/029.pdf, 2005.

2. D. Bernstein. Understanding brute force.
http://www.ecrypt.eu.org/stream/papersdir/036.pdf, 2005.



3. C. de Cannière, J. Lano, and B. Preneel. Comments on the rediscovery of time
memory data tradeoffs.
http://www.ecrypt.eu.org/stream/papersdir/040.pdf, 2005.

4. J. Hong and P. Sarkar. Rediscovery of time memory tradeoffs. IACR eprint
2005/090,
http://eprint.iacr.org/2005/090.

5. G. Rose and P. Hawkes. On the applicability of distinguishing attacks against stream
ciphers. 3rd NESSIE workshop, available at
http://www.qualcomm.com.au/PublicationsDocs/StreamAttack.pdf, Nov. 2002.

6. E. Zenner and M. Boesgaard. How secure is secure? On message and IV lengths for
synchronous stream ciphers.
http://www.ecrypt.eu.org/stream/papersdir/039.pdf, 2005.


