
How Secure is Secure?

On Message and IV Lengths for Synchronous Stream

Ciphers

E. Zenner and M. Boesgaard

CRYPTICO A/S
Fruebjergvej 3

2100 Copenhagen
Denmark

info@cryptico.com

Abstract. In this paper, we discuss security properties for synchronous stream ciphers. Let
the key size and claimed security level be k. Following an initial proposal by Hawkes and
Rose [6], we argue that a synchronous stream cipher should encrypt at most 2k/2 plaintext
blocks before changing the key. We claim further that a synchronous stream cipher should
ideally provide for IV sizes of both k/2 and k, with the second size being mandatory. In this
context, recent results by Hong and Sarkar [3] are also briefly discussed.

1 Introduction

An historical perspective: The NESSIE project [4] was a project within the Information Societies
Technology (IST) Programme of the European Commission, running from 2000 to 2003. Its purpose
was the selection of a portfolio of strong cryptographic algorithms. These algorithms were grouped
into several categories, one of them being stream ciphers.

During the project, a discussion erupted on how strong a stream cipher has to be in order to
be considered secure. It was argued [6] that distinguishing attacks using unrealistic amounts of
data (e.g. in the order of 295 words of known plaintext) should not be considered a threat to the
security of the cipher. No academic consensus was reached on this issue, and no candidate stream
cipher submitted for NESSIE was accepted as as part of the suggested portfolio.

As a follow-up to NESSIE, the Ecrypt Network of Excellence [1] was called to life in 2004, also
as part of an IST Programme. One of the objectives of this project is to improve the understanding
of stream cipher security. To this end, a call for stream cipher primitives was issued, with the goal
of collecting both design and cryptanalysis results for these ciphers. It is to be expected that during
the course of the project, the open questions from the NESSIE project will have to be resolved.

This paper aims at providing some first thoughts on how such a solution could look like. We
build on initial ideas proposed by Rose and Hawkes in [6] and extend them to obtain some more
general results on the maximum message length available to the attacker and on the required
length of the IV vectors. We do not claim academic novelty on our findings, but aim at collecting
arguments and at initiating a discussion on what it takes for a stream cipher to be considered
secure.

Organisation of the paper: In section 2, we introduce the general concept of a synchronous stream
cipher and repeat the birthday paradox. Section 3 builds on [6] and argues for an upper bound on
the data to be encrypted under one key. In section 4, we give arguments for IV sizes required for
stream ciphers. Section 5 briefly discusses the results from [3]. Section 6 concludes the paper.

2 Concepts and Definitions

Synchronous stream ciphers: A synchronous stream cipher transforms a message into a ciphertext
(or vice versa) under the control of a secret key and a public initialisation vector (IV). It maintains
an internal state and operates in two phases:

1. In the setup phase, the key and IV are used to initialise the internal state of the stream cipher.
2. In the encryption/decryption phase, the message is transformed into the ciphertext (or vice

versa). In order to do this, the message and ciphertext are broken into blocks of w bits, and
for each such block, the following steps are executed:
– Update the internal state of the cipher,
– extract a w-bit keystream block of pseudorandom data, and
– combine that block with the message/ciphertext block using a suitable group operation,

e.g., bitwise xor.

For more formal models of stream ciphers see [7, 9].
Throughout the paper, we will be mostly interested in the relationship between the different

parameters of a stream ciphers. The notation used for these sizes is given in Table 1.

Attack model: The classical attack model against ciphers uses an oracle that either contains a
random function R or a cipher instance Ek. The attacker sends message blocks pi ∈ {0, 1}w,
positions ji ∈ N, and IVs ni ∈ {0, 1}v to the oracle and obtains outputs as follows:

– If the oracle contains a random function, then he obtains a random value.
– If the oracle contains a cipher instance, then he obtains the valid encryption of pi if encrypted

under key k and IV ni at position ji of a message stream.

The attacker is not allowed to request two encryptions under the same position/IV pair (j, n); the
reason for this is explained in section 4. He is considered successful if by using less computational
power than required for 2k block encryptions, he is able to tell whether the oracle contains a
random function or an instance of the cipher.

The above security model is simplified, and it is sometimes disputed in discussion. It is, however,
the one that covers all other attack models; a cipher that is secure in this model is also secure,
e.g., against prediction or key reconstruction. Thus, we will use it in the following discussion.

The birthday paradox: In cryptography, the probability of finding a collision after drawing a number
of samples from a fixed set A of values plays an important role. While the mathematical details of
these probabilities tend to be rather messy (see, e.g., [5]), some simple approximations are often
sufficient to estimate the work involved in cryptanalysis:

– Let an urn contain all elements of A. Drawing S samples with replacement, there is a high
probability of obtaining a collision if S ≥

√
A.

– Let two urns each contain all elements of A. Drawing S1 samples from urn 1 with and S2 samples
from urn 2 without replacement, then there is a high probability of obtaining a collision between
the sample sets if S1 · S2 ≥ A.

Parameter Notation

Key size k bit
IV size v bit
Block size w bit
Message size l · w bit

Table 1. Notation for parameter sizes

3 Data Available to the Attacker

In this section, we elaborate on the ideas proposed by Rose and Hawkes in [6].

Block ciphers in stream cipher mode: In a strict sense, a block cipher Ek(·) is a family of pseudo-
random permutations. As a consequence, if the same message is encrypted twice using a block
cipher, the output will be the same in both cases. Thus, block ciphers should never be used
directly in this way (called ECB mode), but should use a stream cipher mode of operation instead.
The most well-known synchronous modes of operation are CTR and OFB mode1, which are widely
used and will be shortly introduced, following [2].

Let pi and ci denote that i-th plaintext and ciphertext block, respectively. Then counter mode
(CTR) is defined by

zi = Ek(IV||i)
ci = zi ⊕ pi

for i = 1, . . . , l.
On the other hand, output feedback mode (OFB) is defined by z0 = IV and

zi = Ek(zi−1)

ci = zi ⊕ pi

for i = 1, . . . , l.

Some birthday attacks: For the following attacks, the attacker uses the oracle to extract slightly
more than 2k/2 subsequent keystream blocks zi (by computing pi ⊕ ci) under the same IV.

In order to attack CTR mode, observe that a block cipher is a permutation. A sequence of
subsequent keystream blocks (z1, . . . , zl) has the property that no keystream block ever repeats.
This leads to a simple distinguishing attack: After roughly l ≈ 2k/2 keystream blocks of a random
function, the sequence z1, . . . , zl would contain at least one keystream block twice (this is a con-
sequence of the first birthday paradox). If, however, this does not happen after slightly more than
2k/2 subsequent keystream blocks, there is a high probability that we are dealing with a block
cipher in counter mode.

A similar attack can be applied against OFB mode by observing that if any keystream block is
ever repeated, then the subsequent keystream blocks are also identical (i.e. if zi = zj , then it follows
that zi+1 = zj+1 a.s.o.). For a random function, however, this is not the case - even if zi = zj , we
will have zi+1 6= zj+1 with overwhelming probability. Since for a random function, a collision will
have occured after slightly more than 2k/2 keystream blocks, it can then be distinguished from a
cipher instance. This attack will even remain valid if the cipher is frequently re-initialized with a
new nonce.

Consequences for stream ciphers: The general understanding is that dedicated stream ciphers are
built either for high speed or low hardware requirements while being slightly inferior to block
ciphers in security (see, e.g., [8]). It follows from this that the security goals for stream ciphers
should not be harder to obtain than those for a block cipher in an appropriate stream cipher mode.

We have seen that for the two most common stream cipher modes, a distinguishing attack
becomes possible after roughly 2k/2 keystream blocks have been produced. Nonetheless, these
modes are not considered insecure - it is just recommended that the key is changed after 2k/2

blocks have been encrypted. We consider it a realistic restriction to ask the same for stream cipher
encryption:

1 CBC mode may be even more wide-spread in practice, but it is a self-synchronizing mode of operation
and is thus not considered in this text.

When attacking a stream cipher with a k-bit key, the attacker can request
at most 2k/2 keystream blocks from the encryption oracle.

4 Requirements on the IV Length

The purpose of the IV: Synchronous stream ciphers as described in section 2 must ensure that
keystream blocks are never re-used. If plaintext blocks p are combined with keystream blocks z
using some addition +, then multiple use of the same z implies that

ci = pi + z

cj = pj + z

⇒ ci − cj = pi − pj , (1)

i.e. that the attacker can obain information about pi and pj from the ciphertexts. In order to avoid
this problem, it would be necessary to run the PRG underlying the stream cipher without ever
re-setting it, which can cause synchronization problems and requires storing the full inner state of
the stream cipher.

In order to solve this problem, it is common practice to make the keystream not only dependent
on the key, but also on a (public) IV which is changed upon re-synchronization. This way, the
generator will produce a new keystream every time it is invoked (with the exception of random
collisions of the keystream blocks).

Models of IV useage: There are different ways of handling IVs, e.g.,

1. it is made sure that no IV is ever re-used, e.g., a counter is used as IV, or

2. the IV is drawn at random from a set of possible values.

There are also intermediate solutions, where an initial IV is drawn at random and some subse-
quent IVs are computed deterministically, before the next random IV is determined. However, the
theoretical considerations can be limited to the two extreme cases of complete control or complete
randomness.

Some more birthday attacks: Remember that according to section 3, the attacker is able to obtain
at most 2k/2 subsequent keystream blocks. In order to protect against the attack described above,
the attacker must not be able to obtain two encryptions under the same position/IV pair (j, n);
otherwise, he will immediately have a successful distinguishing attack using equation 1.

Assuming that the IV is not under the control of the attacker, when will this condition be
violated?

– In case of a counter IV, a position/IV pair will only be re-used after 2v re-initializations. Since
the attacker has only 2k/2 different keystream blocks at his disposal, it is possible to avoid this
kind of attack if v = k/2.

– In case of a random IV, there is a chance that the same IV is drawn twice. The birthday
paradox dictates that this happens after approx. 2v/2 attempts. If the attacker has 2k/2 different
keystream blocks available, this means that we have to choose v = k in order to avoid this kind
of attack.

Note that in the intermediate case of choosing a random IV once in a while and increasing it as a
counter, the chances for the attack are somewhere between those two extremes, though closer to
the second case.

Consequences for IV lengths: Thus, the necessary IV size depends on the way the IV is actually
determined. The following rules apply:

– If the IV is strictly a counter, then v = k/2 is a sufficient IV size.
– If the IV is determined randomly, then v = k is required as IV size.

Since the security of a cipher should not depend on the mode it is deployed in, we propose that
a stream cipher design should ideally provide for IV sizes of v = k/2 and v = k, with the second
size being mandatory.

5 A Remark on Hong’s and Sarkar’s Paper

Recently, Hong and Sarkar stated [3] that applying Time-Memory-Tradeoff attacks in a consequent
way, no stream cipher could provide security of k bits unless the IV is also chosen such that v ≥ k2.
However, this result is based on the assumption that the attacker is precomputing a large key/IV
lookup table and then applies it against encryptions under several keys.

It remains to be seen whether or not this constitutes a valid attack, since in essence, Hong
and Sarkar do not propose a new attack, but a new security model for stream ciphers. So far, the
attacker was entitled to see encryptions under one key and had to distinguish the output from
random. In the Hong/Sarkar model, however, the attacker gets to see encryptions under different
keys. We would like to point out that if this model is valid, then a similar property has always
been known to hold for most keyed cryptographic algorithms in use (e.g. block and stream ciphers,
message authentication codes, signatures, a.s.o.): If the key space has size 2k, and if computational
outputs for at least 2d different keys are available to the attacker, then the attacker is able to
reconstruct a key from a precomputed table of 2k−d output-/key pairs with very high probability.
The probability for the individual key to be reconstructed will still not be larger than 2−k, as
it should be. The only significant difference between synchronous stream ciphers and most other
cryptographic primitives is that for the synchronous stream ciphers, this generic attack can be
executed on a known-plaintext basis, while for most other primitives, it has to be chosen plaintext.

It can, of course, be argued that the use of different IVs under the same key also can be
considered as an encryption under different keys of length k + v. However, in this case, all attacks
presented in [3] require a precomputation time that is equivalent to at least 2k trial encryptions,
i.e. to brute force search. Thus, we believe that the attacks presented by Hong and Sarkar are only
valid if attacking encryptions under several different keys is the attack model of choice. Whether
or not this attack model will be accepted, remains to be discussed.

6 Conclusions

We have given brief arguments for the following security requirements for stream ciphers:

1. A synchronous stream cipher should encrypt at most 2k/2 plaintext blocks before changing the
key.

2. A synchronous stream cipher should ideally provide for IV sizes of v = k/2 and v = k, with
the second size being mandatory.

We would also like to point out that if a consensus should develop that a synchronous stream cipher
has to offer protection for a system that uses several keys, then the IV size of v = k proposed in
[3] is the only choice left.

2 To be more precise, the entropy of the IV has to be at least the key size.

References

1. Ecrypt Network of Excellence in Cryptography.
http://www.ecrypt.eu.org/.

2. N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 2003.
3. J. Hong and P. Sarkar. Rediscovery of time memory tradeoffs. IACR eprint 2005/090,

http://eprint.iacr.org/2005/090.
4. New European Schemes for Signatures, Integrity, and Encryption (NESSIE).

https://www.cosic.esat.kuleuven.ac.be/nessie/.
5. K. Nishimura and M. Sibuya. Probability to meet in the middle. Journal of Cryptology, 3(2):13–22,

1990.
6. G. Rose and P. Hawkes. On the applicability of distinguishing attacks against stream ciphers. 3rd

NESSIE workshop, available at
http://www.qualcomm.com.au/PublicationsDocs/StreamAttack.pdf, Nov. 2002.

7. R. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.
8. A. Shamir. Stream ciphers: Dead or alive. Slides of Invited Talk, Asiacrypt 2004,

http://www.iris.re.kr/ac04.
9. E. Zenner. On Cryptographic Properties of LFSR-based Pseudorandom Generators. PhD thesis, Uni-

versity of Mannheim (Germany), May 2004.

