
Badger - A Fast and Provably Secure MAC

Martin Boesgaard, Thomas Christensen, and Erik Zenner

CRYPTICO A/S
Fruebjergvej 3

2100 Copenhagen
Denmark

info@cryptico.com

Abstract. We present Badger, a new fast and provably secure MAC
based on universal hashing. In the construction, a modified tree hash
that is more efficient than standard tree hashing is used and its security
is proven. Furthermore, in order to derive the core hash function of the
tree, we use a novel technique for reducing ∆-universal function families
to universal families. The resulting MAC is very efficient on standard
platforms both for short and long messages. As an example, for a 64-bit
tag, it achieves performances up to 2.2 and 1.3 clock cycles per byte on
a Pentium III and Pentium 4 processor, respectively. The forgery prob-
ability is at most 2−52.2.

Keywords. MAC, universal hash, tree, pseudo-random generator

1 Introduction

A Message Authentication Code (MAC) provides a way to detect whether a mes-
sage has been tampered with during transmission. The usual model for authen-
tication includes three participants: a transmitter, a receiver and an opponent.
The transmitter sends a message over an insecure channel, where the opponent
can introduce new messages as well as alter existing ones. Insertion of a new
message by the opponent is called impersonation, and modification of an exist-
ing message by the opponent is called substitution. In both cases the opponent’s
goal is to deceive the receiver into believing that the new message is authentic.

In many applications, it is of significant importance that the receiver can
verify the integrity of a message. In some cases this is even more important
than encryption [13]. Often encryption and authentication are both required.
With the emergence of fast software-based encryption algorithms like Rijndael
[9], SNOW [11], Rabbit [7] etc., the need for fast software-based message au-
thentication codes is increasing. Some attempts have been made to construct
integrated MAC and encryption algorithms, e.g. Helix [14]. However, such ap-
proaches make it hard to prove the security of the MAC part. In contrast, MACs
that can be proven secure with respect to an underlying cryptographic primitive
exist. Prominent examples are HMAC [17] and the universal hashing approach
[8].

The construction presented here is based on the universal hashing paradigm
introduced by Carter and Wegman [8, 27]. They proposed to hash a given mes-
sage with a randomly chosen function from a strongly universal family of hash
functions, whereafter the output is encrypted with a one-time-pad (OTP) in or-
der to obtain the MAC tag. Since universal hash functions are only required to
fulfill, in a cryptographical sense, a rather simple combinatorial property, they
can usually be constructed to be very fast. Recent research has been success-
ful in achieving high speed for long messages. Notable examples can be found
in [23, 4, 12, 5, 15]. However, for short messages, these algorithms lose some of
their efficiency due to initialization and finalization overhead; a problem that
was addressed, e.g., by Poly1305 [2] and by new versions of UMAC [18].

It is the aim of this paper to construct a Wegman-Carter based MAC which
is fast on both short and long messages. The performance on short messages is
important, as e.g. the MAC function used in IPsec operates on 43-1500 bytes (see
chapter 3 of [18]) and the MAC function used in TLS operates on 0-17 kilobytes.
In addition, the setup procedure must be simple and fast, as the number of
messages and amount of data processed per setup is small in many applications,
e.g. TLS. Finally, the MAC should provide verifier-selectable assurance1.

In order to achieve high performance we introduce new families of universal
hash functions especially well suited for tree-like hashing. These are obtained
using a novel technique for reducing ∆-universal hash families to universal hash
families. This results in significant performance gains for small compressions.
Furthermore, we develop an effective tree-like hashing procedure which basically
consists of combining a tree hash with a linear hash. The construction is provably
secure (relative to a cryptographic primitive) with simple proofs.

Organization: The paper is organized as follows. In section 2 we present the
definitions of the different classes of universal hash families, we review compo-
sition theorems and sketch our construction. In section 3 we introduce a simple
method to reduce ∆-universal hash families to universal hash families. A modi-
fication of the standard tree hashing scheme is presented in section 4. Section 5
discusses how to build a strongly universal hash family from this scheme. Section
6 contains the specification of Badger, and performance results are presented in
section 7. We conclude in section 8.

2 Universal Hashing and Message Authentication

In 1981, Wegman and Carter [27] showed that randomly chosen elements from a
strongly universal hash function family can be used to compress a given message

1 For a more detailed description of verifier-selectable assurance, see [18]. In short,
this means that the receiver can choose to verify to lower assurance levels than for
the full tag in order to increase performance.

and encrypt the output using a OTP2. We describe briefly in the following why
this is possible, and how it will be used in our design.

Universal hash function families: The following definitions of universal hash
function families are well-known from the literature.

Definition 1. [8, 24] An ε-almost universal (ε-AU) family H of hash functions
maps from a set A to a set B, such that for any distinct elements a, a′ ∈ A:

Pr
h∈H

[h(a) = h(a′)] ≤ ε (1)

H is universal (U) if ε = 1/|B|.

Definition 2. [16, 26] Let (B,+) be an Abelian group. A family H of hash func-
tions that maps from a set A to the set B is said to be ε-almost ∆-universal
(ε-A∆U) w.r.t. (B,+), if for any distinct elements a, a′ ∈ A and for all δ ∈ B:

Pr
h∈H

[h(a) − h(a′) = δ] ≤ ε (2)

H is ∆-universal (∆U) if ε = 1/|B|.

Definition 3. [27, 24] An ε-almost strongly-universal (ε-ASU) family H of hash
functions maps from a set A to a set B, such that for any distinct elements
a, a′ ∈ A and all b, b′ ∈ B:

Pr
h∈H

[h(a) = b] = 1/|B| and (3)

Pr
h∈H

[h(a) = b, h(a′) = b′] ≤ ε/|B| (4)

H is strongly universal (SU) if ε = 1/|B|.

The Wegman-Carter MAC: From the definitions it follows that strongly univer-
sal hashing can be used for message authentication. If we denote the probability
for an impersonation attack to succeed by Pi and the probability for a substitu-
tion attack to succeed by Ps, we have the following theorem:

Theorem 1. [27, 25, 22] There exists an ε-ASU family of hash functions from
A to B if and only if there exists an authentication code with |A| messages, |B|
authenticators and k = |H| keys, such that Pi = 1/|B| and Ps ≤ ε.

The particular Wegman-Carter MAC can be defined as follows:

Definition 4. Given an ε-ASU family H of hash functions mapping from a set
A to a set B, a nonce n, and an OTP r(n), then the Wegman-Carter MAC is

MACWC(M ;h, r(n)) = h(M) ⊕ r(n), (5)

where h is a random hash function from H and M is the message.

A new nonce must be used for each application of the MAC to ensure the un-
conditional security of the construction.

2 Of course, a cryptographic pseudo-random generator (PRG) can also be used to
generate a pseudo-random pad, but then the security depends on the security of the
PRG, as described in [20].

Composition rules: Hash families can be combined in order to obtain new hash
families. The below composition rules (see [25]) describe what happens to the
resulting ε, domains, and ranges.

Composition 1 If there exists an ε1-AU family H1 of hash functions from A
to B and an ε2-AU family H2 of hash functions from B to C, then there exists
an ε-AU family H of hash functions from A to C, where H = H1 × H2, |H| =
|H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Composition 2 If there exists an ε1-AU family H1 of hash functions from A
to B and an ε2-ASU family H2 of hash functions from B to C, then there exists
an ε-ASU family H of hash functions from A to C, where H = H1 ×H2, |H| =
|H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Our construction: In the following, we will use composition rule 2 to construct
a Wegman-Carter MAC. First, we will use an εH∗ -AU universal function family
H∗ to hash messages of all sizes onto a fixed size. Subsequently, we will use an
εF -ASU function family F to guarantee for the strong universality of the overall
construction. Thus, the strongly universal hash family used for our MAC can be
described as H = H∗ × F . Note that the following theorem follows immediately
from composition rule 2:

Theorem 2. The hash function family H = H∗ × F is εF + (1 − εF)εH∗-ASU.

We proceed by describing H∗ in sections 3 and 4 and F in section 5.

3 Reducing A∆U Families to AU Families

Reducing function families: Note that for the classes of hash function families
defined in definitions 1-3, the latter are contained in the former, i.e. an A∆U
family is also an AU family a.s.o. On the other hand, a stronger family can be
reduced to a weaker one. This is, of course, only relevant when a performance
gain can be achieved. In the following, we will describe a method to reduce ∆-
universal hash functions to universal hash functions. It turns out that these new
universal hash families are particularly well-suited for tree structures.

Theorem 3. Let H∆ be an ε-A∆U hash family from a set A to a set B. Con-
sider a message (m,mb) ∈ A×B. Then the family H consisting of the functions
h(m,mb) = h∆(m) + mb is ε-AU.

Proof. From the definitions above we have

Pr
h∈H

[h(m,mb) − h(m′,m′
b) = 0] = Pr

h∆∈H∆

[h∆(m) + mb − h∆(m′) − m′
b = 0]

= Pr
h∆∈H∆

[h∆(m) − h∆(m′) = m′
b − mb].

If m 6= m′, then this probability is at most ε, since H∆ is an ε-A∆U family. If
m = m′ but mb 6= m′

b, then the probability is trivially 0. ut

Constructing the ENH family: A very fast universal hash family is the NH family
used in UMAC [18]:

NHK(M) =

l/2
∑

i=1

(k2i−1 +w m2i−1) · (k2i +w m2i) mod 22w, (6)

where ’+w’ means ’addition modulo 2w’, and mi, ki ∈ {0, ..., 2w − 1}. It is a
2−w-A∆U hash family. In [18], the A∆U property is mentioned, but only the
AU property is explicitly proven.

Lemma 1. The following version of NH is 2−w-A∆U:

NHK(M) = (k1 +w m1) · (k2 +w m2) mod 22w. (7)

Proof. This proof is just a slight modification of the one presented in [18]. We
must show that

Pr
k1,k2

[(k1 +w m1)(k2 +w m2) − (k1 +w m′
1)(k2 +w m′

2) = δ] ≤ 2−w.

where all arithmetic is carried out modulo 22w. Assume that m2 6= m′
2. Define

c = k2 + m2 and c′ = k2 + m′
2. By assumption it follows that c 6= c′. So we have

Pr
k1,k2

[(k1 +w m1)c − (k1 +w m′
1)c

′ − δ = 0] ≤ 2−w.

since from lemma 2.4.3 in [18], the equality will only be satisfied by one k1. ut

Choosing w = 32 and applying theorem 3, we obtain the 2−32-AU function
family ENH, which will be the basic building block of our MAC:

ENHk2,k1
(m4,m3,m2,m1)

= (m1 +32 k1)(m2 +32 k2) +64 m3 +64 232m4, (8)

where all arguments are 32-bit and the output is 64-bit.

4 The Modified Tree Construction

The standard tree construction: The ENH function family maps 128-bit inputs
to 64-bit outputs. An immediate use of such a function is in a tree-like structure
that allows hashing of messages of arbitrary length. More generally, assume a
block length b, a universal hash family H that maps from bc to b bits, and a
message of length |M | = b · cn, for some suitable value n. Let m||m′ denote the
concatenation of two strings m,m′, and let f ◦f ′ denote the successive execution
of function f ′ and f . Then a hash tree can be defined by a succession of n parallel
hashes, as follows [8, 1]:

Definition 5. Let H be a universal hash family, taking bc bits to b bits. Given a
message M = m1||...||mcn with length |M | = bcn, we hash c blocks at a time with
a function h ∈ H and concatenate the results. The result is a string of length
bcn−1. We denote the hash family by Hpar and a member by hpar.

hpar(M) = h(m1, ...,mc)||...||h(mcn−c+1, ...,mcn) (9)

It is easy to see that if H has a collision bound of ε then so does the parallel
hash, Hpar. We define the standard tree construction as follows:

Definition 6. Let M and H be as in definition 5. We define a new hash family
by applying hpar

i n times, each time with a new random hi ∈ H. We denote the
resulting function family by H tree

n and a member by htree
n :

htree
n (M) = hpar

n ◦ hpar
n−1 ◦ ... ◦ hpar

1 (M).

Theorem 4. The function family H tree
n is a 1−(1−ε)n-universal family of hash

functions for equal length messages.

Proof. Let us define εi as the collision bound for Htree
i , then we have for Htree

i+1 :

Pr[hpar
i+1(h

tree
i (m)) − hpar

i+1(h
tree
i (m′)) = 0] ≤ εi(1 − ε) + ε.

Solving the recurrence we get:

Pr[hpar
n (htree

n−1(m)) − hpar
n (htree

n−1(m
′)) = 0]

≤ (1 − ε)n−1ε + ε

n−2∑

i=1

(1 − ε)i + ε

= 1 − (1 − ε)n

ut

The modified tree construction: Consider, as an example, the case c = 2, yielding
a binary tree. Then the message length must be b · 2n, for some suitable n. If
that is not the case, Wegman and Carter propose [27] to break the message into
substrings of length 2b and if necessary pad the last substring with zeroes. The
resulting string is hashed with the parallel hash. If necessary, the resulting string
is again padded with zeroes. This is repeated until the resulting string has length
b. This procedure is illustrated in fig. 1a.

Note that this algorithm is not always optimal, because for message lengths
not equal to a power of two, extra applications of the universal hash function
are required. Of course, this is only significant for short messages. We start
constructing a modified tree hash by defining a modified parallel hash, as follows:

Definition 7. Given a universal hash family, H, whose members h take bc bits
to b bits, consider the message M = m1||..||mq where |M | = bq. Let r = q mod c,
then the modified parallel hash can be defined as:

hmpar(M) =
{

h(m1, ..,mc)||..||h(mq−c+1, ..,mq) if r = 0

h(m1, ..,mc)||..||h(mq−c−r+1, ..,mq−r)||mq−r+1||..||mq if r 6= 0
(10)

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11 0

0

h
par

h
par

h
par

h
par

1

2

3

4

a

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
10

m
11

h
mpar

h
mpar

h
mpar

h
mpar

1

2

3

4

b

Fig. 1. Figure (a) illustrates the standard tree construction using the parallel hash and
figure (b) illustrates the modified tree construction using the modified parallel hash.

Lemma 2. The modified parallel hash is ε-AU on equal length messages.

Proof. In the first case, where q is a multiple of c we simply have a parallel
hash and the bound on the collision probability is ε. In the case where q is not
a multiple of c, there are two possible situations. Either the difference in the
messages M and M ′ is in the part, which is processed by h, or in the part which
is not processed but simply concatenated to the result. In the first situation
the bound on the collision probability is ε. In the second situation the collision
probability is trivially zero. Thus, the collision probability is at most ε. ut

It is straightforward to define a modified tree hash, i.e. define it as in Definition
6 but use the modified parallel hash instead of the usual parallel hash.

Corollary 1. Given a message with length |M | = bq, where cn−1 < q ≤ cn, the
modified tree hash defines a 1 − (1 − ε)n-AU family of hash functions on equal
length messages.

Proof. This follows from theorem 4, when the usual parallel hash is replaced by
the modified parallel hash, since both are ε-AU, and the number of levels is the
same in both cases3. ut

The binary case: Again, consider c = 2. The message is divided into blocks of
size b. If the message length is not a multiple of b, zeros are appended to the
message such that the length becomes a multiple of b. If the length hereafter is
a multiple of 2b, the hash function is applied to each block and the results are
concatenated. If the length is an odd multiple of b, the hash function is applied to
each block except the last block. The results and the last block are concatenated.
The procedure is repeated until the size of the result is b. The construction is
illustrated in Fig. 1b.

3 In a Wegman-Carter binary tree hash, a message consisting of an odd number of
blocks is padded such that the number of blocks is even. This is done after each
application of the parallel hash. The number of levels is equal to the number of
levels for a message whose length is the nearest larger power of two. Now it is easy
to convince oneself that the number of levels of the modified tree hash is exactly the
same.

A different view: Note that the construction can be defined in an alternative
way. Considering again the case c = 2, the message length can be described
by |M | ≡ b

∑n
i=0 ai2

i with ai ∈ {0, 1}. To each term ai = 1 in the sum there
corresponds a tree with i levels. We order these trees according to size with the
largest tree first. More precisely, we use the tree hash for each group of data
corresponding to a term in the sum, concatenate the result, and linearly hash it
backwards, i.e. take the b-bit block as output from the last tree and hash it with
the result of the second to last tree and so on, until only one b-bit string is left.
In other words, the construction consists of a series of concatenated tree hashes
followed by a linear hash [1]. For the example in Fig. 1b, the message length can
be written as: |M | = b(23 + 21 + 20). There is one tree with 3 levels, one with
1 level and one with 0 levels. The hash results if the outputs of those trees are
linearly hashed starting with the result from the smallest tree.

The function family H∗: The above construction is only AU for equal length
messages. To ensure universality for different length messages, we simply con-
catenate the length of the given message in a fixed z-bit format [18, 1]:

Definition 8. Fix z > 0 and let the message M (before padding) have any
length less than 2z. Define Lz = |M | to be the z-bit representation of the length
and define the family H∗ by its members h∗, as follows:

h∗(M) = Lz||h(M). (11)

We then have the following property:

Lemma 3. The hash function family H∗ is 1 − (1 − ε)n-AU.

Proof. In the case |M | 6= |M ′|, the collision probability is trivially zero. In the
case |M | = |M ′|, the collision probability is defined according to corollary 1 by
the number of levels necessary to compress the message. ut

Note that for Badger, we will use H = ENH. This immediately yields a binary
tree with a block size of 64 bit. The input size of the function family H∗ is defined
to be between 0 and 264 − 1 bit. Consequently, the output size is 128 bit, 64 bit
each for the hash and for the message length. Also note that the tree will contain
between 1 and 58 levels, yielding a collision probability between εH∗ ≤ 2−32 for
small and εH∗ = 1 − (1 − 2−32)58 ≤ 2−26.14 for large trees.

5 The function family F

Strenghtening a function family: What is left now according to theorem 1 is to
construct a suitable SU family F , such that the overall function family H =
H∗×F is both efficient and secure. Note that without considering the details of
H∗, the input size of F is b + z bit, and its output size should be equivalent to
the security of the overall scheme.

In section 3, we reduced a strong class of universal hash functions to a weaker
one. In order to construct the strongly universal function familiy F , we will do
the opposite: In accordance with lemma 1 from [12], we will transform the ∆-
universal hash family, MMH∗, proposed by Halevi and Krawczyk [15] based on
[8], into a strongly universal hash family. This is accomplished by adding an
additional key, kl+1, in the following way:

MMHsu
K (M) =

l∑

i=1

miki + kl+1 mod p, (12)

where p is a prime number, M = m1||...||mn, and mi, ki ∈ {0, ..., p − 1}.

Key material: It is easily seen that for a given message M , the amount of key
material, NH(M), needed to choose a function from the family H is defined by

NH(M) = NHdlogc(|M |/b)e + NF , (13)

where NH is the amount of key material needed for the H-function in the tree
and NF is the amount of key material needed for the F -function. Note that the
amount of key material required is the same as for the usual tree MAC.

The choice for Badger: Remember from section 4 that H∗ produces a 128-bit
output, which is also the minimum input size for F . Also remember that the
collision probability for the H∗-function ranges from 2−32 to 2−26.14, depending
on the size of the tree. Since the overall security can not get better than that
(according to theorem 2), an output size of 32 bit for the F -function is sufficient,
since additional bits do not improve the security.

Consequently, we use a 32-bit version of the MMHsu-construction. We take p
to be the largest 32-bit prime number, which is p = 232 − 5. In order to process
a 128-bit input, we have to choose n = 5 and obtain:

FK(M) =

5∑

i=1

qiki + k6 mod
(
232 − 5

)
. (14)

Note that the 128-bit output of H∗ has to be divided into five input blocks qi in
some way. For Badger, it is padded with 7 leading zeroes and then split into 27-
bit blocks4. The rationale for this design and an efficient way to implement it is
given in section A in the appendix. In section B of the appendix, a mathematical
simplification of the F -function is discussed, along with an explanation why it
is not used for Badger.

4 Note that the security claims for the SU function family also hold if not all messages
from {0, ..., 232−6} are actually used as inputs, as long as all keys from {0, ..., 232−6}
occur with equal probability.

6 The Badger Specification

For the algorithmic description of Badger, the following pseudocode calls to
external functions are made:

– PRG KeySetup(K): Initializes PRG with the 128-bit key K.

– PRG IVSetup(N): Initializes PRG with the 64-bit nonce N .

– PRG Nextbit(n): Returns n bit of pseudorandom output.

As above, p denotes the prime number 232 − 5. The standard construction gives
32-bit tags; if larger tags are required, the algorithm is run u times in parallel.
By v, we denote the maximum number of tree levels required when computing
the function family H∗. The notation a||b refers to a concatenation of strings.

Key generation: To generate the key material for the H∗- and F -functions, any
secure PRG can be used, as long as the key length is at least 128 bit. For each
tree, we require v 64-bit keys for the H∗-function and 6 keys from the interval
{0, ..., 232 − 6} for the F -function. Note that (as opposed to the key material for
the pseudo-random pad), this key material can be computed once and then be
re-used for the computation of all future MACs under the same key. The full
procedure is given in figure 2.

Processing phase: In order to compute the function family H∗, we use the
core function ENH as described in section 3. If x ∈ {0, 1}64, we denote the
32 least significant bits by L(x) and the 32 most significant bits by U(x). Then
ENH :{0, 1}64 × {0, 1}128 → {0, 1}64 hashes a 128-bit string m2||m1 under a
64-bit key k to a 64-bit string, as follows:

ENH(k,m2,m1) = (L(m1) +32 L(k)) · (U(m1) +32 U(k)) +64 m2 .

Using this function and denoting level key[j][i] by ki
j , the processing of a

message can proceed as described in figure 3.

Finalization: The length of the message in bit (before padding) is represented
as a 64-bit number and concatenated to the 64-bit result. The resulting 128-bit
block is prefixed with 7 zeroes, divided into five 27-bit blocks and run through
the F -function. The final tag is generated by xor-ing the output of the hash
function with a pseudo-random pad, according to Definition 4. Denoting the
finalization key final key[j][i] by K i

j , this procedure is given in figure 4.

Note that no output of the PRG must ever be re-used; this can be achieved
by running the PRG without resetting, or by using a new IV for every new mes-
sage. In the second case, the initial state of the PRG has to be reconstructed
and PRG IVSetup(N) has to be run each time, making this approach more com-
putationally expensive.

PRG KeySetup(K)
words used = 0

// Assign 32-bit values to finalize keys
for j = 1 to 6:

for i = 1 to u:
final key[j][i] = PRG Nextbit(32)
words used++

// Test whether they are in Zp

for j = 1 to 6:
for i = 1 to u:

while(final key[j][i] ≥ p)
final key[j][i] = PRG Nextbit(32)
words used++

// Empty buffer
while(words used mod 4 6= 0):

discard PRG Nextbit(32)
words used++

// Assign 64-bit values to level keys
for j = 1 to v:

for i = 1 to u:
level key[j][i] = PRG Nextbit(64)

Fig. 2. Pseudo-code of the key setup

Forgery probability: The forgery probability is ε ≤ εF +(1−εF)εH∗ , according to
theorem 2. Remember that depending on the message length, the upper bound
on εH∗ can range from 2−32 to 2−26.14. Also note that εF = 1/(232 − 5) ≈ 2−32.
Using these values, it can be seen that the overall forgery probability has an
upper bound ranging from 2−31 for extremely short to 2−26.12 for extremely
long messages.

Forgery probabilities of up to 2−26.12 are insufficient for most applications.
However, a simple method to reduce the forgery probability is to hash the mes-
sage u times with independent keys and concatenate the results. This results in
a forgery probability of εu. To obtain 128-bit security, we need to hash the mes-
sage 5 times, yielding bounds on the forgery probability of between 2−155 and
2−130.6 and a tag size of 160 bits. In particular, this leads to the verifier-selectable
assurance as each 32-bit tag can be verified independently.5

5 At first glance, it seems that the Toeplitz construction (proposed by Krawczyk
in [16]) is applicable here, i.e. that the u parallel MACs are calculated using
(k1, . . . , k58), (k2, . . . , k59) etc. However, this only makes sense if the resulting forgery
probability is at most εu, and experiments with smaller versions of the H∗-function
indicate that this is not the case here. Thus, the Toeplitz construction is not used
with Badger.

L = |M |
if L = 0

M1 = . . . = Mu = 0
Go to finalization

r = L mod 64
if r 6= 0:

M = 064−r||M
for i = 1 to u:

M i = M

v′ = max{1, dlog
2
Le − 6}

for j = 1 to v′:
divide M i into 64-bit blocks, M i = mi

t|| . . . ||m
i
1

if t is even:
M i = ENH(ki

j , m
i
t, m

i
t−1)|| . . . ||ENH(ki

j , m
i
2, m

i
1)

else:
M i = mi

t||ENH(ki
j , m

i
t−1, m

i
t−2)|| . . . ||ENH(ki

j , m
i
2, m

i
1)

Fig. 3. Pseudo-code of the processing phase

7 Performance

On the testing environment: Performance of the Badger algorithm was mea-
sured on a 1.0 GHz Pentium III and on a 1.7 GHz Pentium 4 processor. The
speed-optimized versions were programmed in assembly language inlined in C
and compiled using the Intel C++ 7.1 compiler. All performance results in this
section are based on generating a 2 · 32 bit tag. The pseudo-random material
required for the algorithm was generated using the stream cipher Rabbit [7, 6],
which is very fast in software. Note that since Badger is designed with speed
being a main objective, it makes sense to use a fast stream cipher (instead of,
e.g., using a block cipher like AES in a suitable stream cipher mode).

PRG KeySetup(K)
PRG IVSetup(N)
for i = 1 to u:

Qi = 07||L||M i

divide Qi into 27-bit blocks , Qi = qi
5|| . . . ||q

i
1

Si =
���

5

j=1
qi

jK
i
j � + Ki

6 mod p

S = Su|| . . . ||S1

S = S⊕ PRG Nextbit(u · 32)
return S

Fig. 4. Pseudo-code of the finalization phase

Table 1. Performance results with and without IV-setup. “Key setup” generates all
keys for the ε-AU and SU hash functions, “Universal hash” processes the tree, and
“Finalization” includes the F -function and generates the pseudo-random pad.

Function Pentium III Pentium 4

Key setup 4093 cycles 5854 cycles
Universal hash 2.2 cycles/byte 1.3 cycles/byte
Finalization without IV 175 cycles 220 cycles
Finalization with IV 433 cycles 800 cycles

Table 2. Badger properties for various restricted message lengths. “Memory req.” de-
notes the amount of memory required to store the internal state including key material
and the inner state of the Rabbit stream cipher. “Setup” denotes the key setup, and
“Fin.” denotes finalization with IV-setup.

Max. Forgery Memory Pentium III Pentium 4

message size bound req. Setup Fin. Setup Fin.

211 bytes (e.g. IPsec) 2−57.7 400 bytes 1133 cycles 409 cycles 1774 cycles 776 cycles

215 bytes (e.g. TLS) 2−56.6 528 bytes 1370 cycles 421 cycles 2100 cycles 788 cycles

232 bytes 2−54.2 1072 bytes 2376 cycles 421 cycles 3488 cycles 788 cycles

261
− 1 bytes 2−52.2 2000 bytes 4093 cycles 433 cycles 5854 cycles 800 cycles

On IV-setup: Note that the pseudo-random pad can be generated either with
or without an explicit IV-setup. If an explicit IV is used, the stream cipher has
to be re-initialized for each message. Without an explicit IV, the key material
for successive messages is produced by continuous extraction of bytes from the
stream cipher, yielding a performance advantage. This corresponds to interpret-
ing the message number as the IV. However, this technique is only applicable if
messages are guaranteed to be received in the same order as generated, which
is often not the case (e.g. in IPsec communication). Table 1 gives performance
numbers both with and without explicit IV-setup.

On short messages: Since the amount of key material required for Badger de-
pends on the length of the message, optimized versions can be used in appli-
cations where the message length is upper bounded. For example, in typical
IPsec applications, the message length cannot exceed 1500 bytes and when au-
thenticating TLS protected data, each message cannot exceed 17 kilobytes [10].
Furthermore, the evaluation of the F -function is simplified since part of the in-
put is zero, see eq. (12). The properties of Badger when the message length is
limited are shown in Table 2.

Note that the performance numbers for the key setup and finalization (which
are dependent on the PRG in use) are partially based on estimates. The num-
bers for the universal hash function, however, are independent of the PRG and
are fully based on measurements. A comparison to the fastest published MAC
designs is given in appendix C.

8 Conclusion

We presented a new fast and provably secure MAC called Badger, based on
universal hashing. In the construction, a modified tree hash was introduced that
basically combines a tree hash with a linear hash. The modified tree hash is
more efficient than the standard tree hash, and its security has being proven.
Furthermore, in order to derive the core hash function of the tree, we introduced
a novel technique for reducing ∆-universal function families to universal families.
The resulting MAC is very efficient on standard processors both for short and
long messages. As an example, for a 64-bit tag, it achieves performances of up
to 2.2 and 1.3 clock cycles per byte on a Pentium III and Pentium 4 processor,
respectively. The key material necessary for the hash functions is only 976 bytes,
and the forgery probability is at most 2−52.2.

References

1. M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In B. Kaliski, editor, Proc. Crypto ’97, volume 1294 of LNCS, pages 470–
484. Springer, 1997.

2. D. Bernstein. The Poly1305-AES message-authentication code. In Proc. Fast

Software Encryption ’05.
3. D. Bernstein. Poly1305-AES speed tables.

http://notabug.com/2002/cr.yp.to/mac/speed.html, 2005.
4. J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets. On families of hash

functions via geometric codes and concatenation. In D. Stinson, editor, Proc.

Crypto ’93, volume 773 of LNCS, pages 331–342. Springer, 1994.
5. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and

secure message authentication. In M. Wiener, editor, Proc. Crypto ’99, volume
1666 of LNCS, pages 216–232. Springer, 1999.

6. M. Boesgaard, T. Pedersen, M. Vesterager, and E. Zenner. The Rabbit stream
cipher - design and security analysis. In Workshop Record of the State of the

Arts of Stream Ciphers Workshop, pages 7–29. ECRYPT Network of Excellence in
Cryptography, October 2004.

7. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius.
Rabbit: A new high-performance stream cipher. In T. Johansson, editor, Proc.

Fast Software Encryption 2003, volume 2887 of LNCS, pages 307–329. Springer,
2003.

8. J. Carter and M. Wegman. Universal classes of hash functions. Journal of Com-

puter and System Sciences, 18:143–154, 1979.
9. J. Daemen and V. Rijmen. AES proposal: Rijndael.

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf, 1999.
10. T. Dierks and C. Allen. The TLS protocol version 1.0, IETF RFC 2246.

http://www.ietf.org/rfc.html, 1999.
11. P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In

H. Heys and K. Nyberg, editors, Proc. SAC 2002, volume 2595 of LNCS, pages
47–61. Springer, 2002.

12. M. Etzel, S. Patel, and Z. Ramzan. Square Hash: Fast message authentication
via optimized universal hash functions. In M. Wiener, editor, Proc. Crypto ’99,
volume 1666 of LNCS, pages 234–251. Springer, 1999.

13. N. Ferguson and B. Schneier. Practical Cryptography. Wiley, 2003.
14. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix:

Fast encryption and authentication in a single cryptographic primitive. In T. Jo-
hansson, editor, Proc. Fast Software Encryption 2003, volume 2887 of LNCS, pages
330–346. Springer, 2003.

15. S. Halevi and H. Krawczyk. MMH: Software message authentication in the
Gbit/second rates. In E. Biham, editor, Proc. Fast Software Encryption ’97, vol-
ume 1267 of LNCS, pages 172–189. Springer, 1997.

16. H. Krawczyk. LFSR-based hashing and authentication. In Y. Desmedt, editor,
Proc. Crypto ’94, volume 839 of LNCS, pages 129–139, Berlin, 1994.

17. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message
authentication IETF RFC 2104. http://www.ietf.org/rfc.html, 1997.

18. T. Krovetz. Software-Optimized Universal Hashing and Message Authentication.
PhD thesis, UC Davis, September 2000.

19. T. Krovetz. UMAC performance.
http://www.cs.ucdavis.edu/˜rogaway/umac/2004/perf04.html, 2004.

20. S. Lucks and V. Rijmen. Evaluation of Badger. http://www.cryptico.com, 2005.
21. New european schemes for signatures, integrity, and encryption (NESSIE).

https://www.cosic.esat.kuleuven.ac.be/nessie/.
22. W. Nevelsteen and B. Preneel. Software performance of universal hash functions. In

J. Stern, editor, Proc. Eurocrypt ’99, volume 1592 of LNCS, pages 24–41. Springer,
1999.

23. P. Rogaway. Bucket hashing and its application to fast message authentication.
In D. Coppersmith, editor, Proc. Crypto ’95, volume 963 of LNCS, pages 29–42.
Springer, 1995.

24. D. Stinson. Universal hashing and authentication codes. In J. Feigenbaum, editor,
Proc. Crypto ’91, volume 576 of LNCS, pages 74–85. Springer, 1992.

25. D. Stinson. Universal hashing and message authentication codes. Designs, Codes,

and Cryptography, 4(4):369–380, 1994.
26. D. Stinson. On the connection between universal hashing, combinatorial designs

and error-correcting codes. In Proc. Congressus Numerantium 114, pages 7–27,
1996.

27. M. Wegmann and J. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.

A Efficient computation of the F -function

Computation of the modular reduction: Remember from section 5 that the F -
function is of the form

FK(M) =
5∑

i=1

qiki + k6

︸ ︷︷ ︸

t

mod
(
232 − 5

)
,

where a 128-bit input has to be divided into five variables q1, . . . , q5. Assuming
that additions of 64-bit variables and multiplications of 32-bit values can be im-
plemented efficiently on standard processors, the major problem is the calcuation
of the modular reduction.

r = 5 * a;

r += b;

if (r < b)

r -= 0xFFFFFFFB; // if overflow has occured

else if (r >= 0xFFFFFFFB)

r -= 0xFFFFFFFB; // if result ≥ 232 − 5

Fig. 5. Computing modulus 232 − 5 in the F -function

Also remember that the 128-bit output of H∗ is padded with 7 leading zeroes
and divided into 5 blocks qi of length 27 bit. This has the effect of guaranteeing
that t < (264−1)/5. In particular, the result of the full addition can be calculated
as a 64-bit value without any need to handle of carry bits. All that remains is
to calculate t mod

(
232 − 5

)
.

Here, we use the well-known fact that

(a · 2n + b) mod (2n − k) = (a · k + b) mod (2n − k) .

In the concrete case, if we write t = (a||b), with a being the upper and b being
the lower word, then the output can be computed as 5a+ b mod

(
232 − 5

)
. Note

that since t < (264 − 1)/5, we have a < (232 − 1)/5 and thus 5 · a < 232 − 1.
Again, not carry occurs, this time for a 32-bit addition. In fact, the only carry
that can occur is when adding the 32-bit words 5a and b. If this happens, we
subtract 232 − 5 from the result, as described in figure 5.

Finally, we have to check whether the result is ≥ 232 − 5. If this is the case,
again, we have to subtract 232 −5. Close examination reveals that if an addition
overflow occurs, then the value of r is in the range {0, . . . , 0xC7FFFFE0}, which
means that the second condition can not be true. Thus, only one of the conditions
can hold.

Saving additions for short messages: For Badger, the input was padded to 135
bits by prefixing zeroes. Thus, the total input to the F -function is of the form
07||L||M , where L is the 64-bit representation of the message length, and M is
the output of the H∗-function. Note that if the first 20 bits of L are zero (i.e.,
L < 244), then the term q5k5 is zero and can be left out to increase performance.
Likewise, if the first 47 bits of L are zero (i.e., L < 217 bit), then the term
q4k4 can be left out, too. This possible saving in computing time (both in key
generation and in finalizing) is the reason for choosing 27-bit blocks qi instead
of 26-bit blocks, as would have been possible.

B A mathematical simplification of the F -function

MAC from ∆-universal families: An obvious generalization of the Wegman-
Carter MAC is as follows:

Definition 9. Let (B,�) be an Abelian group, and H be an ε-A∆U function
family mapping from a set A to the set B. Using a nonce n and a random pad
r(n), the ∆-MAC is defined as

MAC∆(M ;h, r(n)) = h(M) � r(n),

where h is a random hash function from H and M is the message.

Then in a fashion similar to the proof on ε-AXU function families [16], the
following can be shown:

Theorem 5. The probability of an impersonation attack to succeed against the
∆-MAC is 1/|B|, and the probability of a substitution attack to succeed is at
most ε.

Also note that in a fashion similar to [25], the following composition rule can be
proven:

Composition 3 If there exists an ε1-AU family H1 of hash functions from A
to B and an ε2-A∆U family H2 of hash functions from B to C, then there
exists an ε-A∆U family H of hash functions from A to C, where H = H1 ×H2,
|H| = |H1| · |H2|, and ε = ε1 + ε2 − ε1ε2.

Thus, the construction presented in the paper could be simplified by using an
F -function from an ε-A∆U family, as long as its output is combined with the
pseudo-random pad by using the group operation �.

Possible simplification 1: Remember that the family MMH∗ (without the final
key addition) is ∆U. Thus, we could also use the following F -function for our
construction:

F∆
K (M) =

5∑

i=1

qiki mod
(
232 − 5

)
,

i.e. we could leave out the final key addition altogether. In this case, we would
have to implement the pseudo-random pad over the group ({0, . . . , 232 − 6},�),
where � denotes the addition modulo 232−5. This, however, means that for all ki

and all pseudo-random words from the PRG, it has to be checked whether they
are < 232−5. This introduces more computational overhead than generating and
adding one additional key k6; thus, we chose the solution proposed in section 5.

Possible simplification 2: Another possible use for theorem 5 is to use a function
F that is ∆-universal with regards to the group ({0, 1}n,⊕). A possible solution
would be to use a version of MMH∗ that operates over GF(232). In fact, it can
be shown that this version of MMH∗ is ∆U, too. If ⊕ and � denote the addition
and multiplication in GF(232), respectively, then we have

F⊕

K (M) = (q1 � k1) ⊕ . . . ⊕ (q4 � k4).

However, this involves four polynomial multiplications, which are much less effi-
cient on standard processors than additions over the integers. Thus, we discarded
this solution, too.

C A performance comparison

Badger, UMAC and Poly1305: Figure 6 plots the processing performance of
Badger against that of UMAC-64 [18]6 and Poly1305 [2]7. In order to make a
comparison possible, the performance figures have been normalized to 64-bit
tags. Since Poly1305 provides only 128-bit tags, the cycle count for this MAC
has been halved (which is slightly in favour of Poly1305, since it also halves the
processing time of the final AES encryption, which is not possible in practice).
Also note that we do not discuss the key setup times here since for UMAC-64
and Poly1305, no performance figures for the key setup are available.

Fig. 6. Performance for Badger, UMAC-64 and Poly1305 on Pentium 4 processor.
Badger I runs without IV setup, while Badger II uses IV setup.

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

44 64 256 552 1024 1500 long

Message length (bytes)

C
yc

le
s/

by
te Badger I

Badger II
UMAC
Poly1305

6 The figures for UMAC were obtained from the web page [19]. It is not clear from
these figures whether or not they include the final AES encryption of the hash output
or not.

7 The figures for Poly1305 were obtained from the file speed-173601.txt available
from [3]. We used the first entry of type A4444KD for each message size, ignoring
the first two measurements. The resulting figures are the best ones available for
Poly1305.

A cautionary note on performance comparisons: The authors would like to point
out that such a performance comparison has to be taken with at least one grain
of salt. The comparison works with the figures provided by the authors of the
respective MACs, and those figures can be influenced by, e.g.,

– the scope of the implementation (Does it include key setup, IV setup, and
final encryption? Does is measure the time required for message and key
loading, function calls, and so on? Does it take care of data alignment or
starting addresses?),

– the amount of optimization done on the algorithm implementation,
– the exact choice of the message lengths under consideration8,
– the choice of the underlying cryptographic primitive (like Rabbit, AES etc.),
– the amount of optimization done on the implementation of this primitive,
– the amount of memory used to optimize, e.g. by using lookup tables, and
– the computer (processor, memory, cache, bus, etc.) the performance tests

have been conducted on.

When using performance numbers provided by others, it is often not clear how
at least some of the above parameters have been chosen. On the other hand,
when implementing the competitor’s algorithm oneself, it is quite likely that
one would (even if inadvertedly) optimize one’s own brainchild better than the
competitor’s. Thus, we conclude that a fair performance comparison can only
be based on the implementation by an independent entity - the figures provided
here can only give an indication of the right order of magnitude.

Conclusion: Keeping these observations in mind, the following can be concluded
from figure 6:

– Badger, UMAC, and Poly1305 are faster than widespread designs like HMAC-
SHA-1 or CBC-MAC-AES by at least one order of magnitude (see, e.g., [21]).
These MACs require roughly 25 cycles/byte for long messages and are thus
left out of this consideration.

– If run without IV setup, Badger is clearly faster than its competitors on
small messages.

– When run with IV setup, Badger, UMAC, and Poly1305 provide similar
performance. Given the current numbers, it is not entirely clear which MAC
would perform best under identical testing conditions. However, the authors
of this work strive to provide such a comparison in an upcoming paper.

8 Many algorithms have criticals lengths where the performance suddenly decreases
dramatically by increasing the message length by just one bit. This is due to the fact
that computers have limited register and cache sizes and that by exceeding those
sizes, things suddenly get more complicated. By deliberately choosing the message
lengths in one’s own favour, the outcome of a performance comparison could be
severely influenced.

