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Abstract. Pseudorandom generators based on linear feedback shift reg-
isters (LFSR) are a traditional building block for cryptographic stream
ciphers. In this report, we review the general idea for such generators, as
well as the most important techniques of cryptanalysis.

1 Security Model

1.1 Shannon’s model

Basic setting: The most basic task of cryptography is encryption. The setting
was captured by Shannon in [47] as a modification of his well-known communica-
tion model, proposed in [46]. Consider two entities, named sender and receiver,
who want to transmit an arbitrary message at an arbitrary point in time in
complete privacy. There are two communication channels available:

– The secret channel is completely confidential. No information that is trans-
mitted using this channel can be observed by a third party. However, the
secret channel has the disadvantage of being available only at fixed points
in time (e.g., when sender and receiver meet in person).

– The public channel can be observed by any interested third party. Thus,
all information transmitted using this channel can be considered public. As
opposed to the secret channel, the public channel is available at any time.

It is obvious that a confidential message can not be sent across the secret channel,
since it might not be available at the desired time. Nor can it be sent across the
public channel, since it can be observed by third parties.

Encryption schemes: The use of an encryption scheme (or cipher) is the tra-
ditional solution to the above problem. Such a scheme consists of the following
components:

1. A set M of messages, a set C of ciphertexts and a set K of keys.
2. A pair of functions E : K×M → C and D : K×M → C, being computable

by efficient algorithms and satisfying the following property:

D(k, E(k, m)) = m ∀m ∈ M, k ∈ K (1)



E is denoted as encryption function and D as decryption function. Note that
in order to meet condition (1), E(k, ·) has to be a permutation and D(k, ·)
its inverse for all k ∈ K.

In a first step, sender and receiver agree on such an encryption scheme, using
the public channel. They also exchange a key k ∈ K, using the secret channel.
Note that from now on, the knowledge about the key is all that distinguishes a
legitimate sender and receiver from an arbitrary third party (Kerckhoff’s prin-
ciple).

Now sender and receiver are prepared to communicate privately as follows.
Given a message m ∈ M, the sender encrypts m under the key k by calculating
c = E(k, m). The ciphertext c is then transmitted using the public channel.
On the receiver’s side, decryption is performed by converting c back into m =
D(k, c), thus yielding the original message.
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Fig. 1. Shannon’s model

The process of encryption, transmission and decryption is depicted in figure 1.
Note that all information on white background is visible to all interested parties,
while information on gray background is only available to the sender or receiver,
respectively. In particular, a casual observer is aware of the functions E and D
and of the ciphertext c. In some cases, he may be able to derive information
about the message m or the key k from this data (e.g., if E(k, ·) is the identical
permutation). Informally, such an encryption will be called “insecure”. However,
in order to find “secure” encryption functions, an informal notion is not enough.
What we need is a more precise concept of security.

1.2 Attacker model

In order to gain an understanding of security, we have to introduce a malign
third party that has access to all public information in the above model and
tries to derive some of the secret information from it. Such a third party will
be denoted as an attacker, the algorithm employed by him as attack. Once the
attacker is defined, the notion of security is derived in a straightforward way: A
system is secure if the attacker is unable to achieve his goal.
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By definition, the attacker knows the encryption and decryption functions E
and D. He also has access to all information transmitted over the public channel.
He can not, however, do anything but listen to the communication channel and
do his own computations. In particular, he must not remove, change or add data
on the public communication channel. Thus, he is called a passive attacker.

Type of attack: The attacker can mount known-plaintext attacks. This means
that the attacker knows the ciphertext c and part of the corresponding message
m. Note that such an attacker is stronger than an attacker who is limited to
ciphertext-only attacks, increasing the probability of finding security problems.

Computational resources: We assume the attacker to operate on a uniform com-
putational model, like a Turing machine, a Random-access machine, or a per-
sonal computer. He is able to conduct all computational operations that run
faster than a brute-force search on the key space. Similarly, he is limited to a
memory space that is smaller than what would be necessary in order to save all
keys.

As a first indication, the computational requirements of an attack are given
in asymptotical form. However, in order to avoid the pitfalls of asymptotics (like
hidden large factors), all attacks are also implemented. Running time or memory
space estimates will be given based on experimental data for small key lengths.

Notion of security: Given the ciphertext c and a piece of the message, there are
two possible goals for the attacker:

1. Finding the set M′ ⊆ M of all message candidates. A message m′ ∈ M is
a message candidate if it matches the known piece and if ∃k ∈ K such that
E(k, m′) = c.

2. Finding the set K′ ⊆ K of all key candidates. A key candidate k′ is defined
via

k′ ∈ K′ ⇔ ∃m′ ∈ M′ : E(k′, m′) = c

Note that the second goal is more ambitious. Once K′ is known, it is possible to
reconstruct M′ by calculating m′ = D(k′, c) for all k′ ∈ K′. On the other hand,
deriving the set of key candidates from the set of message candidates is usually
not feasible.

1.3 One-time pad and pseudorandom generators

One-time pad (OTP): In [51], G. Vernam introduced a simple encryption algo-
rithm. Let m, c, k ∈ {0, 1}n, then the encryption function is E(k, m) = k ⊕ m
and the corresponding decryption function is D(k, c) = k ⊕ c. Here, ⊕ denotes
the bitwise xor of its operands.

It can be proven [47] that this encryption scheme is indeed perfectly secure
if a random key is available that is never re-used for a second encryption (thus
the name one-time pad). This implies, however, that the key must be as long
as the message to be encrypted. As mentioned in section 1.2, managing keys of
appropriate size is usually not feasible.

3



Pseudorandom generator (PRG): A pseudorandom generator is a function G :
{0, 1}l → {0, 1}∗ that expands a short seed into a bit sequence of arbitrary
length. In order to be of cryptographic interest, G has to be computable by an
efficient algorithm. In practice, it is implemented by a finite state machine with
output, as displayed in figure 2. The components of such a generator are (see,
e.g., [42]):

g

fS
l

1

l

i

zi

v

Fig. 2. Pseudorandom Generator

1. An inner state Si ∈ {0, 1}l,
2. an update function f : {0, 1}l → {0, 1}l that modifies the inner state between

two outputs, and
3. an output function g : {0, 1}v → {0, 1}, v ≤ l, that computes the next output

bit from (part of) the current inner state.

Note that the seed value S0 and the relation Si = f(Si−1) form a recurrence,
defining the sequence of all inner states that the generator assumes over time.
Also note that the generator can assume at most 2l different inner states, yielding
an upper bound on the least period of 2l.

Deployment of PRG: Given a PRG G, a seed value S0 can be expanded into a
keystream z = G(k) of arbitrary length. This allows us to construct a pseudo-

OTP, using an encryption function E(k, m) = z ⊕ m and a corresponding de-
cryption function D(k, m) = z ⊕ c, as described in figure 3.

Note that in general, the seed S0 must not be confused with the key k. In
practice, S0 is generated from k (and possibly some additional information) by
some initialisation function. Thus, overall security depends both on this initial-
isation function and on G.

Remember, however, that for cryptographic systems, every component should
be as strong as possible (cf., e.g., [9]), independently of the other building blocks.
Thus, when considering the security of the PRG, we ignore the existence of an
initialisation function and assume that the seed is equal to the key, i.e. S0 = k ∈
{0, 1}l. For this reason, in the next sections, the terms “seed” and “key” will be
used synonymously when considering the security of a PRG.

4



G G

ReceiverSender

k k

z z

m c m
i i

i ii

Fig. 3. Deployment of Pseudorandom Generator

Security of a pseudorandom generator: In cryptography, a pseudorandom gen-
erator G is secure iff a pseudo-OTP using G is secure.

Remember that the attacker can mount known-plaintext attacks, meaning
that he knows the ciphertext c = c1, . . . , cn and some message bits mi1 , . . . , mis

,
where {i1, . . . , is} ⊂ [n]. Note that this is equivalent to giving the attacker the
corresponding keystream bits zi1 , . . . , zis

right away.
Success is defined as the ability to find either the set of message candidates

or the set of key candidates.

1. Finding the set M′ of consistent messages is equivalent to finding the set Z ′
of consistent keystreams, which is defined as follows:

z′ ∈ Z ′ ⇔ z′i = zi ∀i ∈ {i1, . . . , is} and ∃k′ ∈ K : G(k′) = z′

2. If finding the set K′ of consistent keys is possible, it can be reconstructed
from zi1 , . . . , zis

directly. Thus, the set K′ of consistent keys can be redefined
by

k′ ∈ K′ ⇔ Gi(k
′) = zi ∀i ∈ {i1, . . . , is} ,

where Gi(k) denotes the i-th output bit of generator G under key k.

1.4 Linear feedback shift registers

Sequences from linear recurrences: Remember that the sequence of inner states
(S0, S1, . . .) is defined recursively via S0 = k, Si = f(Si−1). It would be desireable
to choose f such that the least period of the sequence (S0, S1, . . .) is 2l, i.e. that
S2l = S0 and Sj 6= S0 for 0 < j < 2l.

A class of recursions that is particularly well understood are linear recursions.
A linear recursion is defined by a matrix M via

Si = M · Si−1.

Note that no linear recursion can iterate through all 2l possible states, since for
all M , it holds that M · 0 = 0, where 0 is the all-zero vector. On the other
hand, if the key 0 is disallowed, it is possible to construct linear recurrences that
iterate through all of the remaining 2l − 1 inner states.
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Linear feedback shift registers (LFSR): Let Si = (si
0, . . . , s

i
l−1) for arbitrary i.

Consider a special kind of linear recursion, as defined by the following matrix
operation:
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A more intuitive description of the recursion is as follows:

si
j =







si−1
j+1 if 0 ≤ j < l − 1

∑l−1
k=0 aksi−1

k if j = l − 1

This means that the bits of the inner state are shifted to the left, as displayed
in figure 4, with the leftmost bit being discarded and the rightmost bit being
replaced by a linear combination of the previous inner state bits. Computation
of n keystream bits takes O(l · n) computational steps and is easily parallelised
in hardware. The overall construction is denoted as linear feedback shift register

(LFSR).

a. 0 a. l−1a. 1 a. 2 a. l−2

0s s s s s1 2 l−2 l−1

Fig. 4. Linear Feedback Shift Register

LFSR and m-sequences: Linear feedback shift registers are mathematically well
understood. In particular, the feedback vector (a0, a1, . . . , al−1) can be chosen
in such a way that the sequence (S0, S1, . . .) iterates through all 2l − 1 possi-
ble inner states1. This makes maximum period LFSR good building blocks for
pseudorandom generators.

Consider the immediate use of such an LFSR as pseudorandom generator,
creating the output sequence via zi = g(Si) = si

k for a fixed k, 0 ≤ k ≤ l − 1. It
can be shown that the resulting sequence satisfies Golomb’s criteria [24], which
are defined as follows:

– The output sequence has the same period as the inner states, i.e. 2l − 1.

1 For a proof and further details on LFSR, cf. [24].
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– Fix an arbitray integer r, 1 ≤ r ≤ l, and consider a full period of output
bits. Then every bit pattern of length r occurs exactly 2l−r times, with the
exception of 0r, which occurs 2l−r − 1 times. We say that the sequence has
ideal statistics.

– Consider one full period of the output sequence and shift it cyclically by r
positions, 1 ≤ r < 2l − 1. Then the Hamming distance between the original
sequence and its shifted versions is 2l−1 − 1 for all shifts r.

A sequence meeting the above requirements is sometimes denoted as an m-

sequence, and the generating LFSR is called m-LFSR.

Cryptographic limitations Notwithstanding the good statistical properties, m-
sequences do not make good keystreams. Note that the dependency between
the output bits and the inner state S0 can be modelled by a system of linear
equations, implying the following attacks:

– If the attacker knows the feedback vector (a0, . . . , al−1), he can reconstruct
the seed S0 from l arbitrary keystream bits by solving a system of linear
equations. This can be done in O(l3) computational steps (compared to O(l2)
steps for the generation of l bits) and is feasible for any realistic parameter
l.

– If the feedback vector is unknown, the seed S0 can be reconstructed given
2l consecutive keystream bits, solving a system of 2l linear equations. Thus,
this attack requires O(l3) computational steps too, being slower than the
attack with known feedback only by a small constant factor.

Concluding, m-LFSR can be a useful building block for PRG, but some further
work is required to prevent attacks that make use of the inherent linearity.

1.5 Introducing nonlinearity

If the update function of a PRG is modelled by an m-LFSR, nonlinearity has
to be introduced into the keystream. In cryptographic literature and practice,
there are a number of standard techniques that can be used to transform an
m-sequence into a highly nonlinear output sequence. Note that all techniques
presented below can be combined in the construction of a PRG.

Nonlinear filtering: The most obvious construction uses an m-LFSR to model
the update function f , i.e. f(S) = M ·S for an LFSR-type matrix M . In this case,
the only possibility to introduce nonlinearity into the keystream is the use of a
nonlinear output function g. Such a generator is denoted as filtering generator

[44].

Nonlinear combination: A similar approach is the use of two or more m-LFSR
with pairwise differing lengths and feedback vectors. In this design, the output
function g uses part of the inner states of all LFSR in order to generate the
output. Such a generator is called combination generator [44].
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Nonlinear update: Filtering and combination generators have strictly linear inner
states; nonlinearity is introduced using the output function g. It is, however, also
possible to add nonlinearity to the inner states without sacrificing the advantages
of m-LFSR. In this case, memory is partitioned in l1 linear and l2 nonlinear
bits, with l1 + l2 = l. There are two update functions, where f1 : {0, 1}l1 →
{0, 1}l1 is an LFSR-type matrix, while f2 : {0, 1}l → {0, 1}l2 is a suitably chosen
nonlinear function. Note that in order for the keystream to be nonlinear, the
output function must use at least some of the nonlinear bits. For historical
reasons, PRG of this type are denoted as generators with memory.

Irregular clocking: Another method of introducing nonlinearity directly into the
inner state is irregular clocking. A clock control function c : {0, 1}l → �

uses
part of the inner state to determine, how often the update function is applied
before the next valid inner state is reached. More formally:

ci = c(Si−1), Si = f ci(Si−1).

Note that in some cases, ci may be negative. Surprisingly, even very simple
clock-control designs lead to strongly nonlinear inner state recurrences, making
this technique a powerful tool in PRG design. The general class of PRG using
irregular clocking is denoted as clock control generators.

2 Generic Attacks

2.1 Introduction

Two-step security analysis: In section 1, the attacker was defined as operating
in the empirical security model. In order to provide security against such an
attacker, the designer of a pseudorandom generator has to provide two kinds of
analysis:

1. In a first step, security of the generator against previously known attacks
has to be tested. In order to do so, the designer has to be aware of known
attack techniques against pseudorandom generators. Only if none of these
techniques can be applied successfully to the new generator, the second phase
is entered.

2. In the second phase, the designer has to search for new attacks against his
specific generator. Since this task is much more difficult than the application
of existing attacks, the designer is well advised to get the help of as many
experts as he can find. This is true even if the designer himself is an expert,
on the simple grounds that four eyes see more than two.

Note that the diligent and successful completion of both analysis phases does
not provide a security guarantee. Resistance against attacks both old and new
is a necessary, but not a sufficient criterion for security.
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Generic vs. specific attacks: The first part of this thesis will provide a survey of
existing attack techniques against pseudorandom generators. In this context, we
distinguish two broad classes of attacks:

– Generic attacks are applicable even if the attacker does not know the design
of the generator. Most generic attacks date back to the beginnings of public
cryptographic research, and for many years, the security of pseudorandom
generators was measured against them. Generic attacks will be discussed in
the current section.

– In contrast, in order to apply specific attacks, the attacker has to know
the internal build of the generator. Specific attacks are more recent than
the generic ones, and some of them can only be directed against specific
generator designs. They will be discussed in sections 3 to 4. Furthermore,
the novel attack techniques presented in part two of this thesis fall into this
category as well.

2.2 Statistical testing

First and foremost, the attacker must not be able to observe any regularities
in the keystream. If this was the case, he could predict additional bits of the
keystream sequence, yielding an attack on the generator. For this reason, it
must not be possible to tell the keystream apart from a truly random sequence.
This concept is formalised by the notion of statistical hypothesis testing.

Hypothesis testing: Let z ∈ {0, 1}s be a bitstring that is either random (hypoth-
esis H0) or pseudo-random (hypothesis H1). Further, let X : {0, 1}s → � be a
random variable that can be efficiently computed from z. Then we denote the
probability distribution of X(z) by D0 if z was drawn according to H0, and by
D1 otherwise.

Given an observation x for the random variable X(z), the attacker’s goal is to
decide whether x was drawn according to distribution D0 or D1. Note that this
is only possible if the distributions D0 and D1 differ. This difference is measured
by the statistical distance between D0 and D1, which can be defined as

|D0 − D1| =
∑

x

|D0(x) − D1(x)| .

The larger the statistical distance is, the weaker is the pseudorandom generator.
For a distinguishing attack, a decision rule R : � → {0, 1} is used to decide
whether a given x was drawn according to D0 or D1. The quality of such a
decision rule is measured by the advantage

adv(R) =
1

2

(

Pr
x←D0

(R(x) = 0) − Pr
x←D1

(R(x) = 0)

)

.

The decision rule that achieves the greatest advantage is the maximum likelihood
rule, which outputs 0 iff D0(x) > D1(x). The advantage achieved by this rule is
1
4 · |D1 − D2|. Note, however, that the distributions D0(x) and D1(x) must be
known in order to implement this rule, which is not always the case.
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Sample randomness tests: A statistical test is a combination of a suitable random
variable and decision rule, where both must be efficiently computable. Several
statistical tests have been proposed that should be passed by every pseudo-
random generator. As an example, the following tests due to Beker and Piper
[BePi82] formed the basis for the FIPS 140-2 statistical tests of randomness
[NIST02], until the specification of concrete test procedures was removed from
the standard in december 2002.

– Poker test: For values m � s, a random bitstring is expected to contain all
possible bit patterns i of length m equally often. Let k = b s

mc and divide
the bitstring z into k non-overlapping parts of length m. If we denote the
number of occurrences of i by si, the random variable

X =
2m

k





(1..1)
∑

i=(0..0)

s2
i



− k ,

follows a χ2 distribution2 with 2m − 1 degrees of freedom for random se-
quences.
A special case is m = 1, which tests whether the number of zeroes roughly
equals the number of ones in the sequence. With m = 1 and k = s, the
random variable simplifies to

X =
(s0 − s1)

2

s

and follows a χ2 distribution with 1 degree of freedom. This case is also
known as frequency test or monobit test.

– Runs test: A run is a maximum-length substring that consists only of zeroes
(gap) or ones (block). Denote by Gi and Bi the number of gaps and blocks
of length i, resp. Then for k � s and 1 ≤ i ≤ k, a random sequence should
have the property that Gi and Bi should be close to the expected value,
which is ei = (s − i + 3)/2i+2. Thus, the random variable

X =

k
∑

i=1

(Bi − ei)
2

ei
+

k
∑

i=1

(Gi − ei)
2

ei

should follow a χ2 distribution with 2k − 2 degrees of freedom for random
bitstrings.

– Autocorrelation test: A random sequence should bear no similarity to its
shifted versions. For a given shift d, 1 ≤ d ≤ bn

2 c, this is measured by the
hamming distance

Dd =

s−d−1
∑

i=0

zi ⊕ zi+d .

2 Details on the χ
2 distribution and its use for testing purposes can be found in any

textbook on statistics.
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For random bitstrings, Dd is ( s−d
2 , s−d

4 ) normal distributed, implying that

X = 2

(

Dd − s − d

2

)

/
√

s − d

follows a standard normal distribution.

Other tests have been proposed by Golomb [24], Beker and Piper [1], Knuth [30],
Maurer [32], and many others. It is important to remember that all of these tests
are necessary, but by no means sufficient criteria for good keystream sequences.

2.3 Period and linear complexity

Remember that a pseudorandom generator is a finite state machine with at most
2l inner states. Thus, a keystream sequence generated by such a generator must
become cyclic after at most 2l output bits. As a consequence, the more significant
bits of the sequence can be modelled as a function of the less significant bits by
a suitable recurrence relation.

Let R be a recurrence relation with xi = R(xi−1, . . . , xi−k). Then we denote
k as the length of R. If a keystream sequence can be described by such a relation
and if the attacker has at least k consecutive keystream bits at his disposal, he
can easily predict the full keystream sequence. In the following, two particularly
simple types of recurrences will be discussed.

Period: Consider an infinite bitstream z = (z0, z1, . . .). If there exist values
ρ, θ ∈ � such that zi = zi+ρ for all i ≥ θ, the sequence is said to be ρ-periodic
with pre-period θ. The smallest value ρ for which z is ρ-periodic is called the
least period or simply period of z.

Since pseudorandom generators have at most 2l inner states, it holds that
θ+ρ ≤ 2l. Since for all i ≥ θ+ρ, the attacker can use the recurrence zi = zi−ρ to
predict additional bits of the keystream, it is paramount that at most θ + ρ bits
of keystream are generated with the same key. Thus, all sequences generated by
a pseudorandom generator should have large periods.

Linear complexity In some cases, the periodic part of the sequence z can be
described by a linear recurrence relation R such that k < ρ. The length k of
the shortest such linear recurrence is denoted as linear complexity3 LC(z). Put
another way, the linear complexity is the length of the smallest LFSR that gener-
ates the sequence z. Note that the period recurrence itself is a linear recurrence,
such that LC(z) ≤ ρ.

There exists an efficient algorithm by Berlekamp and Massey [31] that con-
structs the shortest linear recurrence describing z. Since this algorithm needs
only 2 · LC keystream bits and takes only O(LC2) computational steps, an at-
tacker can easily simulate a keystream sequence with a low linear complexity by
a linear relation. Thus, high linear complexity is a necessary requirement for all
sequences generated by a pseudorandom generator.

3 Sometimes also the term linear equivalence is used.
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3 Specific Attacks

3.1 Two sample generators

As discussed in section 2, in order to apply a specific attack to a generator, its
inner workings have to be known. This, however, does not mean that the wheel
has to be re-invented for every generator. A number of attack techniques are
known that can be used against a PRG, implying that resistance against such
attacks is a minimal requirement of any such generator.

In order to illustrate the workings of these attacks, two simple pseudorandom
generators will be considered in the next to sections: The Geffe generator and
the {1, 2}-clocked generator. For both generators, the underlying LFSR can be
chosen such that resistance against the generic attacks presented in section 2 is
provided.

Throughout the descriptions, LFSR are denoted by capital letters. The length
of LFSR X is denoted as lX , and the output sequence generated by X is x =
(x0, x1, . . .).

Geffe generator: The Geffe generator was introduced in [13]. It is a nonlin-
ear combination generator, as discussed in subsection 1.5. It consists of three
m-LFSR A, B and C, producing m-sequences a, b and c. Keystream bit zi is
generated using the Boolean function

zi = (ci ∧ ai) ∨ (ci ∧ bi)

= ci · ai ⊕ ci · bi ⊕ bi .

This means that zi = ai if ci = 1, and zi = bi otherwise. Thus, ci is denoted as
control bit and register C as control register. For an illustration of the generator,
see figure 5.

a

if c  =1

output a

else

output b

c

b

i

i

i

i

i

i

zi

LFSR A

LFSR C

LFSR C

Fig. 5. Geffe Generator

{1, 2}-clocked generator: This generator is a special case of the basic clock-
controlled shift register arrangement proposed by Gollmann and Chambers in
[23]. It consists of two m-LFSR A and C, where C is called the control register
of the arrangement. If ci = 0, register A is clocked by one step; otherwise, A
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is clocked by two steps. Thus, the generator is sometimes named step1-step2

generator. The output is taken directly from register A, meaning that zi = as(i),

where s(i) =
∑i

k=0(ci + 1) = (
∑i

k=0 ci) + i + 1. An alternative description is
as follows: Given the inner bitstream a and a pointer to the last used bit, the
next keystream bit zi is obtained by deleting ci bits from a and using the next
available bit as output. An illustration of the generator is given in figure 6.

delete c  bits 
a

c

z

LFSR C

LFSR A

i

ik
i

Fig. 6. {1, 2}-Clocked Generator

3.2 Guessing attacks

Brute force search: In the context of pseudorandom generators, a brute force
search is conducted by guessing all l bit of the inner state. For each of his
guesses, the attacker runs the generator to generate l output bits and compares
the result with the known keystream. If they differ in at least one bit, the guess
is discarded as being wrong. Otherwise, the guess is added to the set of key

candidates. For a generator that passes the standard statistical tests (see section
2.2), the number of false guesses in this set should be close to zero. If there
exists more than one key candidate, the correct one is determined by running
the generator to decrypt all the message.

Remember from section 1.2 that the attacker is not able to conduct a com-
plete brute force attack. Thus, valid attacks in our security model must use
strictly less computational steps than are necessary to run the generator 2l times.
One option for such an attack is as follows: The attacker conducts a brute force
attack over part of the inner state, tries to derive as much information as possi-
ble, and carries on. The following are examples for such attacks.

Guess-and-verify: First, the attacker guesses l′ < l bit of the inner state. If
it is possible to efficiently discard a fraction q of these guesses as being wrong
(0 < q < 1), the attacker is left with only (1−q) ·2l′ candidate partial guesses. If
for each such candidate, he does a complete search over the remaining l− l′ bit,
he ends up with a total running time of 2l′ + (1− q) · 2l′ · 2l−l′ = 2l′ +(1− q) · 2l

computational steps. If q > 2l′−l, the computational effort for this attack is
strictly less than 2l. To illustrate, consider the following attack on the Geffe
generator:

– Geffe generator: The attacker guesses the inner states of registers A and
B. Thus, he can construct the complete sequences a and b. Whenever ai =
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bi 6= zi for a given index i, he has identified a wrong guess. Given enough
keystream (slightly more than 4 · (lA + lB) bit), he can uniquely identify
the correct seed for A and B amongst the guesses. It only remains to do a
brute force search over C, yielding a total running time of 2lA+lB + 2lC . If
lA = lB = lC = l/3, the attack takes roughly 22l/3 computational steps.

Guess-and-determine: Here, too, the attacker guesses l′ < l bit of the seed.
Instead of verifying directly, however, he tries to construct additional parts of
the inner state from the keystream. Only after doing so, the brute force search
is completed by guessing the missing part of the seed. If on average, the attacker
derives m bit from the keystream, this attack takes roughly 2l′ · 2l−l′−m =
2l−m computational steps. As an example, consider the Geffe and {1, 2}-clocked
generators:

– Geffe generator: The attacker guesses the complete inner state of register C.
Now, however, he does know which output bit zi stems from which register
A or B. As long as these bits are part of the seed, the attacker does not
have to guess this part anymore. Assuming that lA = lB = lC = l/3, the
attacker obtains an average of l/3 keystream bits that can be written directly
into registers A and B. Thus, the overall work effort of the attack is only
2l−l/3 = 22l/3.

– {1, 2}-clocked generator: Here, too, the attacker guesses the complete inner
state of register C. This way, for each bit zi, he can determine the corre-
sponding position k in the inner bitstream a = (a0, a1, . . .). Note that on
average, 2 out of 3 seed bits of register A can be read from the keystream.
Thus, the attacker has a total effort of 2l−2lA/3 guesses. If lA = lC = l/2,
this yields a computational effort of 22l/3 generator runs.

Linear consistency test The linear consistency test (LCT) was proposed by Zeng,
Yang and Rao [56]. It can be considered as a combination of the above guessing
attacks, making use of the linearity of the inner bitstreams. To carry out the
test, the attacker guesses l′ < l bit of the inner state in such a way that the
relationship between the remaining bits and the output bits can be modelled by
a system of linear equations. If this equation system is contradictory, the initial
guess is discarded. If the equation system has maximum rank, it can be solved,
yielding the unknown bits of the key candidate. On the other hand, if some
linear equations are linearly dependend on the others, it is usually possible to
construct additional equations until the system has full rank and can be solved.
Remembering that solving a linear equation system in n unknowns requires
O(n3) computational steps using Gauss’ elimination algorithm, it follows that
the running time of this attack is in O(2l′ · (l − l′)3). For illustration, consider
the following examples:

– Geffe generator: As in the case of a guess-and-determine attack, the attacker
guesses the full inner state of register C. Thus, for each output bit zi, he
knows whether it stems from the inner bitstream a or b. In a first step,
consider lA output bits that stem from register A, i.e. ai = zi. Now note
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that each bit ai can be written as linear combination of the initial state
(a0, . . . , alA−1), yielding one linear equation. Given slightly more than lA
such output bits, the resulting equation system is either contradictory or
has full rank with high probability. Thus, the attacker can either discard
his guess for C, or he can construct the complete inner state of register A.
In a second step, he proceeds analogously for register B. Thus, the overall
running time of the attack is in O((lA

3 + lB
3) · 2lC ).

– {1, 2}-clocked generator: Analogously, the attacker guesses the full inner
state of register C. For each output bit zi, this yields an index j such that
zi = aj . Again, if all aj are seen as linear combinations of the initial state
(a0, . . . , alA−1), slightly more than lA output bits should suffice to construct a
linear equation system that is either contradictory or can be solved uniquely.
The running time of this attack is in O(lA

3 · 2lC ).

Extensions: Depending on the generator at hand, the attacks presented in this
section can sometimes be refined by using a backtracking approach. As an ex-
ample, in the guess-and-verify scenario, the attacker guesses a limited number of
bits, verifies, then guesses more bits, verifies again and so on. In the case of the
Geffe generator, he would guess pairs (ai, bi) and immediately verify whether
ai = bi 6= zi before guessing more bits. Since for one in four guesses, this con-
dition is violated, he can reduce the effort for reconstruction of A and B to
(

3
4 · 2

)lA+lB
= 20.58(lA+lB) steps. Such backtracking improvements are also ap-

plicable for the linear consistency test, with examples being given in [17, 59,
58].

3.3 Algebraic attacks

Preliminaries: While the linear consistency test uses linear equations to recon-
struct the seed of a pseudorandom generator, algebraic attacks use nonlinear

equations. A nonlinear equation in x1, . . . , xl is of the form

n
∑

i=1

Mi = c ,

where c ∈ {0, 1} is a constant, n is a positive integer and the Mi are monomials
of the form

Mi =
l
∏

j=1

xj
c(i,j) , c(i, j) ∈ {0, 1} .

The degree di of a monomial Mi is defined as di =
∑l

j=1 c(i, j). The degree
of an equation is the maximum over all monomial degrees di in the equation.
Analogously, the degree of an equation system is the maximum over all monomial
degrees in the equation system.

In principle, nonlinear equations can be used to describe each output bit as a
nonlinear combination of the generator’s seed. There are, however, two problems
associated with this approach:
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– While a linear equation in variables x1, . . . , xl can have at most l monomials,
a nonlinear equation of degree d has up to

Nd :=

d
∑

k=1

(

l

k

)

∈ O(ld)

monomials. In the worst case, for d = l, up to 2l monomials can occur in one
single equation. Thus, working with nonlinear equations can only be efficient
if the number of monomials in each equations is not too large.

– Even worse, solving systems of nonlinear equations is known to be NP-hard
[12]. Thus, we can not expect to find an algorithm that efficiently solves
all nonlinear equation systems. On the other hand, finding such a universal
algorithm is not the attacker’s goal anyway. In our model, he is successful
if he can solve a significant part of the equation systems that occur in this
special context.

The linearisation technique: Assume that the attacker has a system of nonlinear
equations at his disposal, where each equation describes the dependency be-
tween one output bit and the corresponding seed bits. He could try to solve this
system by linearisation, replacing each nonlinear monomial by a single dummy
variable. This way, he ends up with a linear equation system which can be solved
using standard techniques like the Gaussian eliminiation algorithm. Finally, the
dummy variables have to be replaced by the original monomials again, in the
hope that a unique solution (or at least a small set of solution candidates) can
be identified.

Note that during linearisation, the number of variables in the equation system
increases dramatically. Thus, the attacker needs up to Nd linearly independent
linearised equations, i.e. the number of required keystream bits can be very large.
At the same time, the attacker is throwing away valuable information contained
in the monomials of high degree. For an example, consider the information loss
when replacing the nonlinear equation x1x2x3x4 = 1 by the linearised equation
M1 = 1.

The extension technique: An important improvement over mere linearisation is
the extension technique proposed by Kipnis and Shamir [29]. Given a system of
nonlinear equations, the attacker constructs additional equations by multiplying
the existing ones with monomials of small degree. If the degree of the result-
ing equation is not greater than a specified threshold, the equation is added
to the equation system. This way, a nonlinear system with a lot of redundant
information is generated.

In a second step, the extended equation system is linearised as described
above. This time, however, the attacker has a lot more equations at his disposal,
reducing the number of output bits required. Still, for the attack to work, the
original equation system has to be over-specified. In [8], some evidence (though
no formal proof) is given that the attack requires more than l output bits, but
that the number of additional bits is small.
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Sample attack: Remember that for the Geffe generator, an output bit zi can be
described by the nonlinear equation

zi = ci · ai ⊕ ci · bi ⊕ bi . (2)

Thus, each output bit contributes one equation of degree 2 to the equation
system. If the conjecture by Kipnis and Shamir is correct, it would suffice to

collect slightly more than N2 = l2+l
2 output bits in order to build a solvable

equation system of this basic type. Using the Gaussian elimination algorithm, the
computational effort for such an attack would be in the order of O(N2

3) = O(l6),
yielding a polynomial time attack on the Geffe generator.

However, using the extension technique, the number of output bits required
can be reduced even further. As an example, multiplying equation (2) with ci,
ai · bi, ci · ai (resp.) yields the new equations

0 = ci · ai ⊕ zi · ci ,

0 = ai · bi ⊕ zi · ai · bi ,

0 = ci · ai ⊕ zi · ci · ai ,

all of which also have degree 2 once zi is replaced by a bit value from the output
stream. Now, each output bit contributes 4 equations to the equation system,
reducing the overall number of known output bits needed to perform the attack.

Concluding remarks: The attack presented above is the most simple form of
algebraic attack. It is sometimes denoted as XL attack, from its components
eXtension and Linearisation. Note, however, that more efficient variations exist,
although it seems hard to find precise estimates for the required running time
or keystream bits.

All aspects of algebraic attacks are currently a very active field of research.
Research topics include how to find nonlinear equations of low degree, how to
solve these equations as efficiently as possible, how to estimate the resources re-
quired by the algorithms, how to apply algebraic attacks against specific ciphers,
and others.

3.4 Time-Memory-Data tradeoffs

By definition in section 1.2, the attacker is not able to conduct a brute force
search over the key space. He may, however, attempt a search over a small part
of the key space, hoping that the produced output string is observed in the known
keystream. However, if the available keystream is small (say, little more than l
bit), his probability of success is negligibly small. The picture changes, though, if
a sufficiently long string of keystream bits is available. In this case, the attacker
can make use of a time-memory-date tradeoff attack, with the probability of
finding a pre-computed value amongst the observed keystream being close to
one.
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The birthday problem: Such collision-based attack techniques are surprisingly
successful not only in stream cipher cryptanalysis, but also in attacking other
cryptographic primitives like block ciphers or hash functions. The mathemati-
cal reason for this success lies in a number of results from probability theory
that have been termed birthday problem. The cryptographically most relevant
instances of the birthday problem are defined as follows:

1. Collision within one set: Let an urn contain M balls numbered 1 to M . One
ball is drawn at a time, with replacement, the number is written down. What
is the expected number N of draws until the first collision occurs, i.e. the
same ball is drawn for the second time?

2. Collisions between two sets: Let an urn contain M balls numbered 1 to
M . First, a set of N1 balls is drawn without replacement, the numbers are
written down. Then the balls are placed back into the urn. Now balls are
drawn, with replacement, and the number is compared to the numbers of
the list. What is the expected number N2 of draws before a collision with
the list occurs?

Since exact collision probabilities for the birthday problem are difficult to handle
in practice, asymptotic estimates are being used for cryptographic purposes. In
the case of a collision within one set, the expected number of necessary draws
can be approximated as N ≈

√
M for large values of M . For collisions between

two sets, the estimate N2 ≈ M/N1 is used.

Basic Time-Memory tradeoff attack: In the precomputation phase, the attacker
selects N1 different keys at random, and for each key computes the first l output
bits produced by the generator. The resulting tupel of output string and key is
saved in a hash table, indexed by the output string. During realtime phase, the
attacker is given N2 + l − 1 bits of generator output. From this, he generates
N2 overlapping output strings of length l. Each string is looked up in the hash
table, and if a match is found, the corresponding key can be read directly from
the table. Note that if N1 · N2 > 2l, the attacker is likely to succeed using this
method.

The computational effort during precomputation is determined by running
the generator N1 times and storing 2l · N1 bits in a hash table. In the realtime
phase, an expected N2 table lookups generate the main bulk of work. Thus,
the overall effort is roughly N1 + N2 computational steps. In the best case,
N1 ≈ N2 ≈ 2l/2, allowing the attacker to break the system in roughly 2l/2+1

computational steps, using 2l · 2l/2 bits of memory.

Improvements: In the basic time-memory tradeoff attack, both time and memory
requirements for the pre-computation phase are in the order of N2. In practice,
however, computation time is considerably cheaper than memory. This problem
is solved by the time-memory-data tradeoff [3], which allows for a more sophis-
ticated choice of the attack parameters. Using this technique, the parameters T
(realtime computation time), P (pre-processing computation time), D (number
of known keystream bits), and M (number of memory bits available) can be
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chosen in any way, as long as the conditions P = 2l/N , D2 ≤ T ≤ 2l, and
TM2D2 = 22l are satisfied.

As another problem arising in practice, realtime computation time is deter-
mined by the number of table lookups. Since the table of samples is very large,
it must be stored on hard disk, and disk access is slower than RAM access by
a factor of about 4 million (or 222). While in theory, this constant factor is of-
ten neglected, it slows down a practical attack considerably. A solution to this
problem is sampling, where only states that generate certain output patterns
are stored on disk. As a consequence, only those output strings that display this
pattern have to be looked up, keeping the overall computational time constant,
but reducing the number of disk accesses.

4 Correlation Attacks

4.1 Basic correlation attack

Consider the Geffe generator or any other generator that is based on a number
of LFSR and a nonlinear combining function g. While g must be balanced for
all generators that pass the statistical tests given in section 2.2, there is a more
subtle danger. For some choices of g, a correlation between an input bit a and
the corresponding output bit z can be observed. As an example, consider the
combining function

g(a, b, c) = (c ∧ a) ∨ (c ∧ b)

of the Geffe generator. While the output is balanced, the probability that z =
g(a, b, c) = a equals 3/4.

An analogy to coding theory: For any combination generator and any input bit
a to the combining function g, the relation between a and output bit z can
be modelled in a coding theoretic setting as a noisy channel,4 as shown in fig-
ure 7. Each output bit z can be seen as a noisy version of the input bit a, i.e.

a

e

z

Fig. 7. A noisy channel

z can be modelled as z = a ⊕ e for some noise bit e with Pr(e = 1) =: pe.
Let z0, z1, . . . , zn−1 be the known output bits. It is known that the correspond-
ing vector (a0, a1, . . . , an−1) was generated by an LFSR of length lA. Thus,

4 For an introduction to the theory of linear codes, see any textbook on coding theory,
e.g. [41],[50].
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(a0, a1, . . . , an−1) can be considered as a codeword in a linear code, with lA
information bits and n − lA checking bits. The problem of reconstructing the
contents of register A is equivalent to finding the codeword (a0, a1, . . . , an−1)
with the least Hamming distance to the known output word (z0, z1, . . . , zn−1).

However, the general problem of reconstructing the nearest codeword in an
arbitrary linear code is NP-hard [2]. In coding theory, the problem was solved
by deliberately choosing the linear code in such a way that decoding is easy. A
surprising consequence was that when the duality of coding theory and crypt-
analysis was discovered by Siegenthaler in 1984 [48, 49], no generic algorithms
for the decoding of arbitray linear codes existed. Ever since, cryptographers have
developed algorithms for the decoding problem, enabling increasingly powerful
correlation attacks.

Siegenthaler’s attack: The first algorithm for correlation attacks was proposed by
Siegenthaler [49]. Consider a combining function g and input variable a such that
pe := Pr(a 6= z) < 1/2. Given output bits z0, . . . , zn−1, the attacker proceeds as
follows. He guesses the complete contents of register A and generates n bits of
internal bitstream a0, . . . , an−1. Then, he computes the Hamming distance

Da =

n−1
∑

i=0

(ai ⊕ zi) ,

where ⊕ denotes bitwise addition over GF(2), while the overall sum is computed
over the integers.

Note that the distribution of Da differs, depending on whether the guess for
A is correct or not. If the guess was right, Da is binomially distributed with
expected value µ = n · pe and variance σ2 = n · pe · (1 − pe). If it was wrong,
however, the vector (a0, . . . , an−1) behaves like a random n-bit string, and we
have µ = n/2 and σ2 = n/4.

These differing distributions yield a statistical test on our guess for A. De-
pending on the values for n and pe, the attacker will set a threshold D′ such
that a guess is accepted as a partial key candidate if D > D′. Note that the
distinguishing power of this test increases with growing n and |pe − 1/2|. In
the best case, exactly one candidate guess for A will be derived, immediately
yielding the correct contents of register A. Otherwise, several candidate guesses
remain, making additional tests have necessary in order to identify the correct
one. Nonetheless, if n and |pe − 1/2| are large enough, the number of steps
required to retrieve the contents of register A do not significantly differ from
2lA .

Observe that Siegenthaler’s technique is a special case of a guess-and-verify
attack, as described in section 3.2. However, in the case of the Geffe generator,
the overall running time of a correlation attack is only 2lA +2lB +2lC (as opposed
to 2lA+lB +2lC steps that are required for the simple attack presented in section
3.2).

Extensions and limitations: The above attack technique can be extended to
correlations between the output z and linear combinations of input bits x(i). If
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the generator consists of k LFSRs X (1), . . . , X(k) and there exists an index set
I ⊂ [k] such that

Pr

(

⊕

i∈I

x(i) 6= z

)

<
1

2
, (3)

then the attacker can guess the initial states of all registers X (i) with i ∈ I .
Next, he generates the first n bits generated by each such register and calculates

xj =
⊕

i∈I x
(i)
j for j = 0, . . . , n − 1. Computing the Hamming distance between

(x0, . . . , xn−1) and (z0, . . . , zn−1), the attack proceeds as above. Note, however,
that the computational effort for this phase has gone up to 2λ steps, where
λ =

∑

i∈I lX(i) .
An obvious protection against correlation attacks that guess at most r reg-

isters (1 ≤ r < k) is the choice of a combining function g that is correlation-
immune of r-th order, i.e. no set I ⊂ [k] with |I | ≤ r exists that meets condition
(3). It is known, however, that a high correlation-immunity leads to a low linear
complexity, and vice versa [45]. Thus, all practical combining generators with
an acceptable linear complexity will be vulnerable against correlation attacks to
some extend.

4.2 Fast correlation attacks

Underlying idea: Consider again the case of a combination generator where the
output ai of a single register A is correlated with the output zi of the generator.
The attack proposed by Siegenthaler basically requires a brute force search over
all possible initial states of register A, yielding an effort of 2|A| computational
steps. In [33, 34], Meier and Staffelbach proposed to use techniques from coding
theory [11] in order to speed up the reconstruction of register A.

First observe that each bit of the vector a = (a0, a1, . . . , an−1) produced by
A is part of a number of linear relations. For example, if the simple feedback
recurrence ai = ai−lA ⊕ ai−lA+1 is used, each bit ak is contained in the three
relations

ak = ak−la ⊕ ak−la+1

ak+lA = ak ⊕ ak+1

ak+lA−1 = ak−1 ⊕ ak .

Additional linear relations can be constructed, for example by addition of known
ones. Note that the number of such relations grows in n, but that most of them
will contain a large number of different variables.

Now remember that the output vector z = (z0, zi, . . . , zn−1) can be seen
as the intermediate vector a = (a0, a1, . . . , an−1), masked by an error vector
e = (e0, e1, . . . , en−1) with Pr(ei = 1) < 1/2. The basic observation is as follows:
If e = 0, then z = a and z meets all linear relations that are fulfilled for a. If
only one bit ek = 1 in e, all equations containing zk are contradictory, while all
others are satisfied. But even if the Hamming weight of e increases, some linear
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relations in the zi will be fulfilled. As a rule of thumb, we expect zk = ak for a
given k if the share of satisfied relations amongst those that contain zk is large.
On the other hand, we expect zk 6= ak if the share of satisfied relations is small.
This simple observation can be used for a variety of reconstruction algorithms
for the inner state of A.

An exponential time algorithm: Note that in order to reconstruct a, it is sufficient
to reconstruct lA bits of a. The remaining bits can be computed using systems
of linear equations. A simple algorithm proposed by Meier and Staffelbach [33,
34] proceeds as follows:

1. Construct a reference set of linear relations in the zi of equal Hamming
weight.

2. For each zi, i = 0, . . . , n − 1, compute the probability p∗ that this bit is
correct, given the number of linear relations it satisfies.

3. Choose lA bits for a reference guess â by picking those zi with the highest
values p∗.

4. Find the correct guess by modifying â by 1, 2, . . . bit and constructing the full
vector a. Compute the Hamming distance between a and z. If this distance
is close to the expected value, output a and stop.

The average running time of this algorithm is determined by step 4, which takes
about

Nd =

d
∑

i=0

(

lA
d

)

trials, with d being the expected number of wrong digits in the reference guess â.
Since this value is clearly smaller than lA, reconstructing register A takes 2c·lA

steps with c < 1.

A polynomial time algorithm: A number of improvements over the above algo-
rithm are possible. In particular, note that when correcting the guess â in step 4,
all bits are treated equal. We may, however, assume that those bits that satisfy
a large number of equations are more likely to be correct than those that satisfy
less equations. Thus, a variant algorithm also proposed by Meier and Staffelbach
[33, 34] proceeds as follows:

1. Construct a reference set of linear relations in the zi of equal Hamming
weight.

2. For each zi, i = 0, . . . , n − 1, compute the probability p∗ that this bit is
correct, given the number of linear relations it satisfies.

3. Negate those bits zi whose probability p∗ is under a certain threshold. If the
resulting vector z does not satisfy all relations, go back to step 2.

Note that this description is a simplified version of the full algorithm. Nonethe-
less, in all cases the running time for step 1 is linear in the length of the registers.
Step 2 and 3 are even independent of the register length, instead, the running
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time is determined by the Hamming weight of the linear relations used, by the
error probability Pr(ei = 1) and by the number n of output bits available. While
no closed mathematical expression for the running time could be found, it was
observed that for relations of small weight (up to 8), the attack was extremely
fast in practice. As a consequence, the use of LFSR with a small number of
feedback taps is strongly discouraged.

Improvements: Following the publication of [34], a number of improvements have
been proposed. These can be subdivided into two categories:

– In step 1 of the above algorithm, linear relations of low degree have to be
found. The efficiency of steps 2 and 3 can be increased if more care is spent
on this preprocessing step. Proposals on how to find more or better linear re-
lations were given, e.g., by Mihaljević and Golić [39], Chepyzhov and Smeets
[6], and Penzhorn [40].

– In addition, the iterative decoding procedure in step 2 and 3 was improved
by several proposals, such as the algorithms given by Zeng, Huang, Yang
and Rao [55, 57], Mihaljević and Golić [39], Chepyzhov and Smeets [6] or
Živković [53]. As opposed to the original algorithm, many of these proposals
also contain a proof of their convergence.

However, all of these proposals are efficient only if the feedback vectors of the
LFSRs under consideration have low weight. This limitation was done away
with by a set of completely different algorithms to be discovered in subsequent
years. Johansson and Jönsson use convolutional codes [26, 28], Turbo Codes [25]
or algorithms from learning theory [27] in order to reconstruct the inner state.
Canteaut and Trabbia [4] gave an algorithm to construct linear relations of low
weight for arbitrary feedback vectors. Chepyzhov, Johansson and Smeets [5]
approximate the LFSR output by a linear code of smaller dimension, but with
higher error probability. A similar approach is chosen by Filiol [10], who proposes
a d-decimating attack, considering only every d-th output bit of the LFSR.

Depending on the combination generator considered, the above attack tech-
niques can be of varying efficiency. For the majority of generators, however, the
most efficient algorithm to date is a combination of several of the above concepts,
as proposed by Mihaljević, Fossorier and Imai [37, 38] and improved by Chose,
Joux and Mitton [7].

4.3 Correlation attacks and memory

Correlation immunity: The efficiency of correlation attacks makes it necessary to
harden combination generators against such attacks. The most obvious solution
is to choose the combining function g in such a way that no correlations between
the output and a linear combination of a small number of internal bits exist. More
formally, a function g : {0, 1}k → {0, 1} with input vector x = (x(1), . . . , x(k)) is
said to be correlation immune of k’-th order if no linear combination L of up to
k′ < k variables exist such that Pr(L(x) = g(x)) 6= 1/2. The following tradeoffs,
however, make it difficult to strengthen the generator in this way:
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– It was shown by Siegenthaler, Xiao and Massey in [48, 54] that an increase in
correlation immunity leads to a decrease in linear complexity, and vice versa.
Thus, a highly correlation immune combination generator can be attacked
using the Berlekamp-Massey-algorithm.

– Let {Li | 1 ≤ i ≤ 2k} be the set of linear functions in up to k variables. The
correlation coefficient between g and Li is defined as ci = 2 · pi − 1, with
pi = Pr(Li(x) = g(x)). It was proven by Meier and Staffelbach [35] that

2k

∑

i=1

ci
2 = 1 . (4)

This means that if g has high correlation immunity (i.e. g is not correlated to
any linear function in few variables), it is at the same time strongly correlated
to linear functions with a higher number of variables. Thus, by choosing the
optimal algorithm, a correlation attack is always possible.

Improved correlation immunity from nonlinear memory: In order to destroy the
dependency between correlation immunity and linear complexity, Rueppel [43]
introduced the generator with (nonlinear) memory. As described in section 1.5,
the memory of such a generator consists of two parts: While the majority is made
up of LFSRs, some bits are updated by a nonlinear function f2. It was shown
that for a good choice of f2, such a function can achieve maximum correlation
immunity while at the same time having maximum linear complexity.

However, it was proven by Meier, Staffelbach and Golic̀ in [36, 14, 16], that
for such a generator, too, a tradeoff similar to (4) can be found. This time,
however, several consecutive input bits from each register have to be considered,
increasing the number of variables in the linear approximation function L. As a
consequence, correlation attacks against combiners with memory are indeed less
efficient, but not entirely impossible as was hoped for originally.

4.4 Correlation attacks and clock control

A new notion of correlation: Instead of using nonlinear memory, some LFSR-
based generators use nonlinear clocking, i.e. some or all LFSR are irregularly
clocked, depending on the internal state of the generator. Note that this way,
the attacker can not see which internal bit xi contributes to which output
bit zj . Thus, measuring the the Hamming distance between (x1, . . . , xn) and
(z1, . . . , zn) becomes meaningless, and correlation attacks in the above sense are
no longer applicable.

However, other measures of correlation can be used. Golić and Mihaljević
[19, 20] proposed to replace the Hamming distance by the so-called Levenshtein

distance. This distance measures the minimum number of elementary operations
(insertion, deletion, and substitution) required to transform one sequence into
a prefix of the other. Given such a notion of distance, the standard correlation
attack as defined by Siegenthaler can be deployed.
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Correlation attacks: Depending on the cipher design, some edit operations may
not be allowed. Thus, it may be necessary to define a so-called Constrained

Levenshtein Distance (CLD). Note, for example, that the Hamming distance is
a CLD where only substitutions are allowed. For the decimation generator, only
repetitions (a restricted kind of insertion) are applicable. In any case, an efficient
dynamic programming algorithm for the computation of the CLD was given in
[20]. Given a target sequence of length n, the algorithm computes the CLD in
the order of O(n2) computational steps.

A number of modifications of this attack have been proposed against specific
generators [52, 22, 21, 18], but the general method remains the same. In [15],
Golić proposes an algorithm similar to the fast correlation attack by Meier and
Staffelbach. However, step 1 of the algorithm (finding suitable linear relations)
proved to be difficult, except for very special generators. Thus, a full algorithmic
specification of a fast correlation attack on general irregularly clocked generators
remains an unsolved research problem to date.
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