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Abstract

Pseudorandom generators (PRGs) are used in modern cryptography to trans-
form a small initial value into a long sequence of seemingly random bits. Many
designs for PRGs are based on linear feedback shift registers (LFSRs), which
can be constructed in such a way as to have optimal statistical and periodical
properties.

This thesis discusses construction principles and cryptanalytic attacks against
LFSR-based PRGs. After providing a full survey of existing cryptanalytical re-
sults, we introduce and analyse the dynamic linear consistency test (DLCT),
a search-tree based method for reconstructing the inner state of a PRG. We
conclude by discussing the role of the inner state size in PRG design, giving
lower bounds as well as examples from practice that indicate the necessary size
of a secure PRG.





Zusammenfassung

Pseudorandom Generators (PRGs) werden in der modernen Kryptographie ver-
wendet, um einen kleinen Startwert in eine lange Folge scheinbar zufälliger Bits
umzuwandeln. Viele Designs für PRGs basieren auf linear feedback shift regis-
ters (LFSRs), die so gewählt sind, dass sie optimale statistische und periodische
Eigenschaften besitzen.

Diese Arbeit diskutiert Konstruktionsprinzipien und kryptanalytische An-
griffe gegen LFSR-basierte PRGs. Nachdem wir einen vollständigen Überblick
über existierende kryptanalytische Ergebnisse gegeben haben, führen wir den
dynamic linear consistency test (DLCT) ein und analysieren ihn. Der DLCT ist
eine suchbaum-basierte Methode, die den inneren Zustand eines PRGs rekon-
struiert. Wir beschließen die Arbeit mit der Diskussion der erforderlichen Zus-
tandsgröße für PRGs, geben untere Schranken an und Beispiele aus der Praxis,
die veranschaulichen, welche Größe sichere PRGs haben müssen.
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Chapter 1

Introduction

1.1 On pseudorandom generators and modern
cryptography

Cryptography: In recent years, cryptography had to deal with an ever in-
creasing number of security issues. While classical cryptography was mainly
concerned with the making or breaking of secret codes, the field has broadened
since the dawn of what is denoted as modern cryptography in the early 1970s.
In addition to the classical goal of achieving (or compromising) confidentiality
of communication, many new tasks like data integrity, message authentication,
or non-repudiation have been added.1

Nonetheless, providing confidentiality of communication is still a prime goal
in modern cryptography. The increase in computational power of potential at-
tackers endangers well-researched algorithms like the data encryption standard
(DES [86]) even if they resist the constant tide of new cryptanalytic techniques.
At the same time, computationally restricted platforms like smart cards, RFID
tags, or sensor nodes require encryption algorithms that are more and more
efficient. The gap in power between the potential attacker and the encryption
device is widening, driving forward the search for algorithms that are both more
efficient and more secure.

Pseudorandom generators: A very efficient building block for encryption
algorithms is a pseudorandom generator. Such a device transforms a short initial
value into a long stream of random-looking output bits. If the generator is to be
used in a cryptographic setting, it should be impossible for anyone not knowing
the initial value to tell for a given output sequence whether it was produced
by the generator or not. Given such a cryptographically sound pseudorandom
generator, a secure encryption algorithm can be constructed using standard
techniques.

1For a more complete list of cryptographic goals, see p. 3 of [86].
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2 CHAPTER 1. INTRODUCTION

Traditionally, pseudorandom generators are deployed in cryptographic hard-
ware like mobile phones, pay-tv decoders, or radio equipment. In particular,
many pseudorandom generators based on linear feedback shift registers (LF-
SRs) have been proposed over the years that are optimised for efficiency in
hardware, making them particularly good choices for most of the computation-
ally restricted platforms mentioned above. In a setting where the advanced
encryption standard (AES, [28]) is too bulky and even the hardware-efficient
tiny encryption algorithm (TEA, [120, 121]) requires too many gates, pseudo-
random generators can solve the encryption problem in a very cost-effective way
[106].

Surprisingly, this demand is not met by a matching supply. Most pseudo-
random generators that have been used or published in the past have known
weaknesses. Examples for designs with such problems include (but are not lim-
ited to) the A5/1 generator used in the GSM mobile phone standard [133], the
E0 generator from the Bluetooth standard [108], or the well-known RC4 algo-
rithm deployed in a multitude of applications like the TLS/SSL standard for
secure internet communication [75]. Even the European NESSIE competition
had to turn down all prospective candidates for a pseudorandom generator stan-
dard due to a variety of security reasons [91]. Thus, design of efficient and secure
pseudorandom generators remains an ongoing challenge and an important field
in cryptographic research up to the present day.

1.2 On thesis structure and contributions

Contents: This thesis discusses the design and deployment of pseudorandom
generators for cryptographic purposes. To this end, it is necessary to delve into
cryptanalysis, which is the activity of searching for security weaknesses of cryp-
tographic algorithms. The underlying goal of cryptanalysis is not destructive,
but constructive: Only by improving the understanding of possible problems, it
is possible to propose new design criteria for cryptographic systems (see, e.g.,
[74]). To this end, the thesis is organised as follows:

• Part I defines the general framework of the thesis and introduces impor-
tant notions and concepts, including those informally mentioned in this
introduction.

• Part II surveys the state of the art in cryptanalysis of pseudorandom
generators. It describes both techniques against unknown designs (chapter
4) and against generators whose specifications are known (chapters 5-6),
giving examples and resource estimates.

• Part III discusses backtracking attacks, a particular cryptanalytic tech-
nique applicable against LFSR-based pseudorandom generators. After
introducing the basic method in chapter 7, its potential is demonstrated
against the self-shrinking generator (chapter 8), and an upper bound on
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the running time is proven and experimentally verified. A variant of the at-
tack is successfully applied against a whole class of clock-controlled LFSR-
based generators in chapter 9 and again, an upper bound on the security
of such generators is proven mathematically and confirmed in a trial im-
plementation.

• Part IV analyses the necessary inner state size for pseudorandom genera-
tors to be deployed in encryption algorithms. After introducing the nec-
essary terminology in chapter 10, the inner state size is formally defined
and its advantages and disadvantages are highlighted in chapter 11. In
particular, lower bounds on the necessary size are obtained. While prov-
ing a formal upper bound is beyond the current state of cryptographic
research, a survey of fielded pseudorandom generators is given in chapter
12, leading to the conclusion that in practice, inner state sizes very close
to the theoretical lower bounds should be obtainable.

Publications: The contents of this thesis are based on a number of publica-
tions by the author, as follows:

• Parts I and II extend the survey on cryptanalytic techniques provided in
[129].

• Chapter 8 of part III is based on the attack against the self-shrinking
generator published in [132].

• Chapter 9 of part III on the efficiency of the clock control guessing attack
was first discussed in [128].

• Part IV extends the considerations made in [130, 131] on the role of the
inner state in stream cipher design.

1.3 On notation

The reader is expected to be familiar with the basic terms and notations both
from theoretical and practical computer science. Beyond that, the following
mathematical notations will be used throughout the thesis:

• By “iff”, we denote “if and only if”.

• [n] := {1, . . . , n} for n ∈ N
+.

• If f : S → S is a function over a range S and x ∈ S, then f i is defined
recursively for i ∈ N

+ by f1(x) := f(x) and f i(x) := f(f i−1(x)).

• log(x) := log2(x), i.e., logarithms are always to the base 2 unless indicated
otherwise.
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• Let D be a probability distribution over the set S. Then x ∈D S means
that x is drawn from S according to distribution D. A short notation for
this is x ← D. With D(x), we denote the probability for x to be drawn
under distribution D.



Part I

Preliminaries
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Chapter 2

Security Model

2.1 Shannon’s model

Basic setting: The most basic task of cryptography is encryption. The set-
ting was captured by Shannon in [110] as a modification of his well-known
communication model, proposed in [109]. Consider two entities, named sender
and receiver, who want to transmit an arbitrary message at an arbitrary point
in time in complete privacy. There are two communication channels available:

• The secret channel is completely confidential. No information that is
transmitted using this channel can be observed by a third party. However,
the secret channel has the disadvantage of being available only at fixed
points in time (e.g., when sender and receiver meet in person).

• The public channel can be observed by any interested third party. Thus,
all information transmitted using this channel can be considered public.
As opposed to the secret channel, the public channel is available at any
time.

It is obvious that a confidential message cannot be sent across the secret channel,
since it might not be available at the desired time. Nor can it be sent across
the public channel, since it can be observed by third parties.

Encryption schemes: The use of an encryption scheme (or cipher) is the tra-
ditional solution to the above problem. Such a scheme consists of the following
components:

1. A setM of messages, a set C of ciphertexts and a set K of keys.

2. A pair of functions E : K×M→ C and D : K×C →M, being computable
by efficient algorithms and satisfying the following property:

D(k,E(k,m)) = m ∀m ∈M, k ∈ K (2.1)

7



8 CHAPTER 2. SECURITY MODEL

E is denoted as encryption function and D as decryption function. Note
that in order to meet condition (2.1), E(k, ·) has to be a bijective function
and D(k, ·) its inverse for all k ∈ K.

In a first step, sender and receiver agree on such an encryption scheme, using the
public channel. They also exchange a key k ∈ K, using the secret channel. Note
that from now on, the knowledge about the key is all that distinguishes a legit-
imate sender and receiver from an arbitrary third party (Kerckhoffs’ principle
[66]).

Now sender and receiver are prepared to communicate privately as follows.
Given a message m ∈M, the sender encrypts m under the key k by calculating
c = E(k,m). The ciphertext c is then transmitted using the public channel.
On the receiver’s side, decryption is performed by converting c back into m =
D(k, c), thus yielding the original message.

Sender Receiver

c

k

DE
public channel

secret channel

m

k k

m

Figure 2.1: Shannon’s model

The process of encryption, transmission and decryption is depicted in figure
2.1. Note that all information on white background is visible to all interested
parties, while information on gray background is only available to the sender or
receiver, respectively. In particular, a casual observer is aware of the functions
E and D and of the ciphertext c. In some cases, he may be able to derive
information about the message m or the key k from this data (e.g., if E(k, ·)
is the identical permutation). Informally, such an encryption will be called
“insecure”. However, in order to find “secure” encryption functions, an informal
notion is not enough. Instead, a more precise concept of security is required.

2.2 Notions of security

In order to gain an understanding of security, it is necessary to introduce a
malign third party that has access to all public information in the above model
and tries to derive some of the secret information from it. Such a third party will
be denoted as an attacker, the algorithm employed by him as an attack. Once
the attacker is defined, the notion of security is derived in a straightforward
way: A system is secure if the attacker is unable to achieve his goal.

By definition, the attacker knows the encryption and decryption functions E
andD. He also has access to all information transmitted over the public channel.



2.2. NOTIONS OF SECURITY 9

He cannot, however, do anything but listen to the communication channel and
do his own computations. In particular, he must not remove, change or add data
on the public communication channel. Thus, he is called a passive attacker.

Several different definitions for attackers are possible. The most important
ones will be briefly reviewed, roughly following a classification given by Rueppel
in [102, 103]. In order to describe an attacker, the following questions must be
answered:

1. Type of attack:

• Ciphertext-only attack: the attacker knows only the ciphertext c.

• Known plaintext attack: the attacker knows c and part of the corre-
sponding message m.

• Chosen plaintext attack: the attacker knows the ciphertext c. In
addition, he can choose some messages mi and obtains the corre-
sponding ciphertexts ci.

2. Computational resources: How many computations can he conduct, and
how much memory space is available to him?

3. Notion of success: When is he successful? Is it sufficient to find out that
a single message candidate m is more likely than others? Does he have to
find a unique decryption m for the ciphertext c? Or is he required to find
the key k that was used?

2.2.1 Perfect security (information-theoretic model)

Definition: This model was also proposed by Shannon in [110] and considers
an all-powerful attacker.

1. Type of attack: Ciphertext-only. In addition, the attacker has complete
access to the probability distributions of the messages and keys.

2. Computational resources: He has unlimited computational power.

3. Notion of success: He is already considered successful if, after reading a
ciphertext c, the conditional probabilities p(m|c) for the messages differ
from the known probabilities p(m).

Discussion: It is not possible to break a perfectly secure encryption scheme
without extending Shannon’s model by giving the attacker additional capabili-
ties. Furthermore, it can be shown that perfectly secure encryption exists (see
section 3.1 for an example). However, a cipher can only be perfectly secure if the
key length is not smaller than the entropy of the message that is to be encrypted.
Also, the key must never be re-used. Considering that modern applications in-
clude the encryption of multimedia web pages, phone calls or online videos with
enormous data rates, the infeasibility of managing keys of appropriate length
becomes obvious.
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2.2.2 Asymptotic security (complexity-theoretic model)

Definition: This model was initiated by a work of Goldwasser and Micali [42]
and uses concepts from complexity theory. For an introduction to this field of
research, refer to [41].

1. Type of attack: Known plaintext or chosen plaintext.

2. Computational resources: The attacker is limited to “feasible operations”
in an asymptotic sense. Given a security parameter λ (often the key
length), the computational resources available to the attacker are upper
bounded by a function in O(p(λ)), with p being a polynomial.

3. Notion of success: He is successful if he can distinguish the encryption
function E(k, ·) from a truly random function with significant probability.
Again, “significant” is defined in an asymptotic sense, i.e., the success
probability must be lower bounded by a function in Ω(1/q(λ)), for some
polynomial q.

Discussion: In cryptography, asymptotic analysis can be misleading. Recall
that an asymptotical lower bound only guarantees that functions in Ω(g(λ)) are
lower bounded by c · g(λ) for some positive c as λ approaches infinity. This
implicit assumption, however, does not always hold for realistic values of λ,
which tend to be rather small1. Thus, an encryption scheme that is secure in
an asymptotic sense need not be secure for practical values of λ.

Another frequent misconception about the asymptotic approach is its claim
of providing “provable security”. In most cases, the security of a scheme is
proven under the assumption that its building blocks are secure. In this way,
the problem of proving the security is not solved, but only transferred to smaller
entities. What would be needed in the end is an exponential lower bound on
the complexity of a simple computational problem. The task of finding such a
lower bound, however, is related (but not identical) to the well-known question
of whether or not P 6= NP holds, and remains equally unsolved down to the
present day.

2.2.3 Empirical security (system-theoretic model)

Definition: For the given reasons, neither of the first two approaches is very
influential in practical cipher design. Instead, a rather vague definition is used
as follows.

1. Type of attack: Known plaintext or chosen plaintext.

2. Computational resources: The attacker’s computational resources are lim-
ited to the best system that money can buy, plus some security margin.

3. Notion of success: He is successful if he can obtain any information about
the message m that he did not have previously.

1Often, λ denotes the key length, ranging from 40 to 256 for practical systems.
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Discussion: The vague definition of the attacker’s capabilities in the empirical
model implies two problems: It is not known what capabilities the best realistic
attacker might have. And, worse yet, algorithm theory does not provide us
with the tools to give precise (i.e., non-asymptotic) resource estimates. Thus,
the security of an encryption scheme can never be proven in the empirical model
- it can only (for particularly bad schemes) be disproven by implementing and
demonstrating a working attack.

Knowing that black-or-white answers are usually not possible, research has
to fill the shades of gray in between. To this end, all known attacks that are
expected to be more efficient than full search over the key space have to be
considered, and running time estimates have to be given (e.g., using asymptotics
or doing trial runs on a weakened scheme). In this way, potential threats to the
security of the system can be identified, even though different experts may end
up with differing opinions on whether the cipher is actually secure or not.

Concluding, users can never be sure that an empirically secure scheme is
actually unbreakable. There is always the possibiliy that an attack exists but has
not been discovered yet, or worse: has been kept secret. Nonetheless, trust in the
security of an encryption scheme will increase over time. Again, a comparison
with complexity theory seems appropriate. In NP -hardness theory, confidence
in the hardness of NP -complete problems is gained from years of trying to find
polynomial time algorithms. Similarly, in the empirical model, confidence in a
cipher is gained from years of trying to break it.

Given such confidence in known algorithms, however, the security of new
cryptographic schemes can be specified more readily. If the design and proof
techniques proposed by Bellare and Rogaway [6, 5] are used, the minimum
resources required to break the new scheme can be specified exactly as long
as the minimum resources to break the underlying scheme are known from
experience.

2.3 Attacker model

As could be seen from the discussions in the preceding section, all security
models combine advantages with drawbacks. Their usefulness differs, depending
on the application context. Since our purpose is to present and discuss a number
of attack techniques against practical encryption schemes, the suitability of the
security models can be assessed as follows:

• Information-theoretic model: All practical schemes have a limited key size.
On the other hand, they must be able to encrypt long messages. Thus,
they can never be perfectly secure.

• Complexity-theoretic model: For most existing ciphers, asymptotical secu-
rity can neither be proven nor disproven. The model is more suited for the
design of new ciphers2. On the other hand, most encryption schemes de-

2The same holds for Bellare’s and Rogaway’s extension to the system-theoretical model or
other, more recent notions of security like the bounded storage model by Maurer [78].
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signed under this paradigm have rather inefficient encryption algorithms,
making them unsuitable for practical use.

• System-theoretic model: Even though this model is completely unsatis-
factory from a theoretical point of view, it seems to be the only suitable
way of analysing encryption schemes that are already in existence. In fact,
all widely used ciphers (like DES [92], IDEA [72] or AES [93]) have been
evaluated in this way, and even systems designed under the complexity-
theoretical paradigm tend to use building blocks whose security has been
analysed solely under this model. Thus, it seems reasonable to choose the
empirical approach on security for our purposes.

Thus, our considerations in this thesis will assume a system-theoretical notion
of security. Since this notion is rather vague in its general form, we will use a
special instance of an attacker, as follows.

Type of attack: The attacker can mount known-plaintext attacks. This
means that the attacker knows the ciphertext c and part of the correspond-
ing message m. Note that such an attacker is stronger than an attacker who is
limited to ciphertext-only attacks, increasing the probability of finding security
problems.

Computational resources: We assume the attacker to operate on a uniform
computational model, like a Turing machine or a Random-access machine, whose
computational behaviour is similiar to that of a programmable microprocessor.
He is able to conduct all computational operations that run faster than a full
search over the key space. Similarly, he is limited to a memory space that is
smaller than what would be necessary in order to save all keys.

As a first indication, the computational requirements of an attack are given
in asymptotical form. However, in order to avoid the pitfalls of asymptotics
(like hidden large factors), all attacks are also implemented. Running time or
memory space estimates will be given based on experimental data for small key
lengths.

Notion of success: Given the ciphertext c and a piece of the message, there
are two possible goals for the attacker:

1. Finding the setM′ ⊆ M of all message candidates. A message m′ ∈ M
is a message candidate if it matches the known piece and if ∃k ∈ K such
that E(k,m′) = c.

2. Finding the set K′ ⊆ K of all key candidates. A key candidate k′ is defined
via

k′ ∈ K′ ⇔ ∃m′ ∈M′ : E(k′,m′) = c

Note that the second goal is more ambitious. Once K′ is known, it is possible
to reconstruct M′ by calculating m′ = D(k′, c) for all k′ ∈ K′. On the other
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hand, deriving the set of key candidates from the set of message candidates is
usually not feasible.
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Chapter 3

Pseudorandom Generators

3.1 One-time pad and pseudorandom generators

One-time pad (OTP): In [118], G. Vernam introduced a simple encryption
algorithm. Letm, c, k ∈ {0, 1}n, then the encryption function is E(k,m) = k⊕m
and the corresponding decryption function is D(k, c) = k ⊕ c. Here, ⊕ denotes
the bitwise xor of its operands.

It can be proven [110] that this encryption scheme is indeed perfectly secure
if a random key is available that is never re-used for a second encryption (thus
the name one-time pad). This implies, however, that the key must be as long
as the message to be encrypted. As mentioned in section 2.2, managing keys of
appropriate size is usually not feasible.

Pseudorandom generator (PRG): A pseudorandom generator is a func-
tion G : {0, 1}l → {0, 1}∗ that expands a short seed into a bit sequence of
arbitrary length. In order to be of cryptographic interest, G has to be com-
putable by an efficient algorithm. In practice, it is implemented by a finite
state machine with output, as displayed in figure 3.1. The components of such
a generator are (see, e.g., [100]):

1. An inner state Si ∈ {0, 1}l,

2. an update function f : {0, 1}l → {0, 1}l that modifies the inner state
between two outputs, and

3. an output function g : {0, 1}v → {0, 1}, v ≤ l, that computes the next
output bit from (part of) the current inner state.

Note that the seed value S0 and the relation Si = f(Si−1) form a recurrence,
defining the sequence of all inner states that the generator assumes over time.
Also note that the generator can assume at most 2l different inner states, yield-
ing an upper bound on the least period of 2l.

15
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g

fS
l

1

l

i

zi

v

Figure 3.1: Pseudorandom Generator

Deployment of PRG: Given a PRG G, a seed value S0 can be expanded into
an output stream z = G(k) of arbitrary length. This allows us to construct a
pseudo-OTP, using an encryption function E(k,m) = z⊕m and a corresponding
decryption function D(k,m) = z ⊕ c, as described in figure 3.2.

G G

ReceiverSender

k k

z z
m c m

i i

i ii

Figure 3.2: Deployment of Pseudorandom Generator

Note that in general, the seed S0 must not be confused with the key k.
In practice, S0 is generated from k (and possibly some additional information)
by some initialisation function. Thus, overall security depends both on this
initialisation function and on G. More details on the transformation of k into
S0 will be given in chapters 10 to 12.

For the moment, however, hold in mind that for cryptographic systems,
every component should be as strong as possible (cf., e.g., [33]), independently
of the other building blocks. Thus, when considering the security of the PRG,
the existence of an initialisation function can be ignored, assuming instead that
the seed is equal to the key, i.e., S0 = k ∈ {0, 1}l. For this reason, in the
next sections, the terms “seed” and “key” will be used synonymously when
considering the security of a PRG.

Security of a pseudorandom generator: In cryptography, a pseudoran-
dom generator G is secure iff a pseudo-OTP using G is secure.
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Remember that the attacker can mount known-plaintext attacks, meaning
that he knows the ciphertext c = c1, . . . , cn and some message bits mi1 , . . . ,mis ,
where {i1, . . . , is} ⊂ [n]. Note that this is equivalent to giving the attacker the
corresponding output bits zi1 , . . . , zis right away.

Success is defined as the ability to find either the set of message candidates
or the set of key candidates.

1. Finding the setM′ of consistent messages is equivalent to finding the set
Z ′ of consistent output streams, which is defined as follows:

z′ ∈ Z ′ ⇔ z′i = zi ∀i ∈ {i1, . . . , is} and ∃k′ ∈ K : G(k′) = z′

Such an attack is sometimes denoted as prediction attack, since its goal is
to predict the unknown output bits.

2. If finding the set K′ of consistent keys is possible, it can be reconstructed
from zi1 , . . . , zis directly. Thus, the set K′ of consistent keys can be rede-
fined by

k′ ∈ K′ ⇔ Gi(k
′) = zi ∀i ∈ {i1, . . . , is} ,

where Gi(k) denotes the i-th output bit of generator G under key k. This
attack is also denoted as key reconstruction attack.

3.2 Linear feedback shift registers

Sequences from linear recurrences: Remember that the sequence of inner
states (S0, S1, . . .) is defined recursively via S0 = k, Si = f(Si−1). It would be
desireable to choose f such that the least period of the sequence (S0, S1, . . .) is
2l, i.e., S2l = S0 and Sj 6= S0 for 0 < j < 2l.

A class of recursions that is particularly well understood are linear recursions.
A linear recursion is defined by a matrix M via

Si =M · Si−1.

Note that no linear recursion can iterate through all 2l possible states, since for
all M , it holds that M · ~0 = ~0, where ~0 is the all-zero vector. On the other
hand, if the seed ~0 is disallowed, it is possible to construct linear recurrences
that iterate through all of the remaining 2l − 1 inner states.

Linear feedback shift registers (LFSRs): Let Si = (si0, . . . , s
i
l−1) for ar-

bitrary i ≥ 1. Consider a special kind of linear recursion, as defined by the
following matrix operation:















si0
si1
...
sil−2

sil−1




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
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


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...
. . .

...
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


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

·
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








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l−2
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l−1
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
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
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A more intuitive description of the recursion is as follows:

sij =







si−1
j+1 if 0 ≤ j < l − 1

∑l−1
k=0 aks

i−1
k if j = l − 1

This means that the bits of the inner state are shifted to the left, as displayed
in figure 3.3, with the leftmost bit being discarded and the rightmost bit being
replaced by a linear combination of the previous inner state bits. Computation
of n output bits takes O(l · n) computational steps and is easily parallelised in
hardware. The overall construction is denoted as linear feedback shift register
(LFSR).

a. 0 a. l−1a. 1 a. 2 a. l−2

0s s s s s1 2 l−2 l−1

Figure 3.3: Linear Feedback Shift Register

LFSRs andm-sequences: Linear feedback shift registers are mathematically
well understood. In particular, the feedback vector (a0, a1, . . . , al−1) can be
chosen in such a way that the sequence (S0, S1, . . .) iterates through all 2l − 1
possible inner states1. This makes maximum period LFSRs good building blocks
for pseudorandom generators.

Consider the immediate use of such an LFSR as pseudorandom generator,
creating the output sequence via zi = g(Si) := sik for a fixed k, 0 ≤ k ≤ l− 1. It
can be shown that the resulting sequence satisfies Golomb’s criteria [56], which
are defined as follows:

• The output sequence has the same period as the inner states, i.e., 2l − 1.

• Fix an arbitray integer r, 1 ≤ r ≤ l, and consider a full period of output
bits. Then every bit pattern of length r occurs exactly 2l−r times, with
the exception of 0r, which occurs 2l−r − 1 times. The sequence is said to
have ideal statistics.

• Consider one full period of the output sequence and shift it cyclically by
r positions, 1 ≤ r < 2l − 1. Then the Hamming distance between the
original sequence and its shifted versions is 2l−1 − 1 for all shifts r.

A sequence meeting the above requirements is sometimes denoted as maximal
sequence or m-sequence, and the generating LFSR is called m-LFSR.

1For a proof and further details on LFSRs, cf. [56].
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Cryptographic limitations: Notwithstanding the good statistical proper-
ties, m-sequences do not make good output streams. Note that the dependency
between the output bits and the inner state S0 can be modelled by a system of
linear equations, implying the following attacks:

• If the attacker knows the feedback vector (a0, . . . , al−1), he can reconstruct
the seed S0 from l arbitrary output bits by solving a system of linear
equations. This can be done in O(l3) computational steps (compared to
O(l2) steps for the generation of l bits) and is feasible for any realistic
parameter l.

• If the feedback vector is unknown, the seed S0 can be reconstructed given
2l consecutive output bits, solving a system of 2l linear equations. Thus,
this attack requires O(l3) computational steps too, being slower than the
attack with known feedback only by a small constant factor.

Concluding, m-LFSRs can be a useful building block for PRG, but some further
work is required to prevent attacks that make use of the inherent linearity.

3.3 Introducing nonlinearity

If the update function of a PRG is modelled by an m-LFSR, nonlinearity has to
be introduced into the output stream. In cryptographic literature and practice,
there are a number of standard techniques that can be used to transform an
m-sequence into a highly nonlinear output sequence. Note that all techniques
presented below can be combined in the construction of a PRG.

Nonlinear filtering: The most obvious construction uses an m-LFSR to
model the update function f , i.e., f(S) = M · S for an LFSR-type matrix
M . In this case, the only possibility to introduce nonlinearity into the output
stream is the use of a nonlinear output function g. Such a generator is denoted
as filtering generator [103].

Nonlinear combination: A similar approach is the use of two or more m-
LFSRs with pairwise differing lengths and feedback vectors. In this design, the
output function g uses part of the inner states of all LFSRs in order to generate
the output. Such a generator is called combination generator [103].

Nonlinear update: Filtering and combination generators have strictly lin-
ear inner states; nonlinearity is introduced using the output function g. It is,
however, also possible to add nonlinearity to the inner states without sacrificing
the advantages of m-LFSRs. In this case, memory is partitioned in l1 linear
and l2 nonlinear bits, with l1 + l2 = l. There are two update functions, where
f1 : {0, 1}l1 → {0, 1}l1 is an LFSR-type matrix, while f2 : {0, 1}l → {0, 1}l2 is
a suitably chosen nonlinear function. Note that in order for the output stream
to be nonlinear, the output function must use at least some of the nonlinear
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bits. For historical reasons, PRG of this type are denoted as generators with
memory.

Irregular clocking: Another method of introducing nonlinearity directly into
the inner state is irregular clocking. For such generators, the inner state Si is
segmented into several substates Si,1, . . . , Si,q, e.g., by considering each LFSR
as a separate substate. Each substate has its own update function f1, . . . , fq.
A clock control function c : {0, 1}l → Z

q determines how often each update
function is applied before the next valid inner state is reached, i.e., for c(Si−1) =
(c1, . . . , cq), the next inner state is determined by

Si = (f1
c1(Si−1,1), . . . , fq

cq (Si−1,q))

Note that in some cases, cj may be negative. Surprisingly, even very simple
designs with irregular clocking (e.g., with q = 2) lead to strongly nonlinear
inner state recurrences, making this technique a powerful tool in PRG design.
The general class of PRG using irregular clocking is denoted as clock control
generators.



Part II

Survey of Existing Attacks
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Chapter 4

Generic Attacks

4.1 Introduction

Two-step security analysis: In chapter 2, the attacker was defined as oper-
ating in the empirical security model. In order to provide security against such
an attacker, the designer of a pseudorandom generator has to provide two kinds
of analysis:

1. In a first step, the security of the generator against previously known
attacks has to be tested. In order to do so, the designer has to be aware of
known attack techniques against pseudorandom generators. Only if none
of these techniques can be applied successfully to the new generator, the
second phase is entered.

2. In the second phase, the designer has to search for new attacks against
his specific generator. Since this task is much more difficult than the
application of existing attacks, the designer is well advised to get the help
of as many experts as he can find. This is true even if the designer himself
is an expert, simply because four eyes see more than two.

Note that the diligent and successful completion of both analysis phases does
not provide a security guarantee. Resistance against attacks both old and new
is a necessary, but not a sufficient criterion for security.

Generic vs. specific attacks: The first part of this thesis will provide a
survey of existing attack techniques against pseudorandom generators. In this
context, we distinguish two broad classes of attacks:

• Generic attacks are applicable even if the attacker does not know the de-
sign of the generator. Most generic attacks date back to the beginnings of
public cryptographic research, and for many years, the security of pseu-
dorandom generators was measured against them. Generic attacks will be
discussed in the current chapter.

23
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• In contrast, in order to apply specific attacks, the attacker has to know
the internal structure of the generator. Specific attacks are more recent
than the generic ones, and some of them can only be directed against
certain classes of generators. They will be discussed in chapters 5 to
6. Furthermore, the novel attack techniques presented in part III of this
thesis fall into this category as well.

4.2 Statistical testing

First and foremost, the attacker must not be able to observe any regularities in
the output stream. If this was the case, he could predict additional bits of the
output sequence, yielding a prediction attack. For this reason, it must not be
possible to tell the output stream apart from a truly random sequence. This
concept is formalised by the notion of statistical hypothesis testing.

Hypothesis testing: Let z ∈ {0, 1}s be a bitstring that is either random
(hypothesis H0) or pseudo-random (hypothesis H1). Further, let X : {0, 1}s →
R be a random variable that can be efficiently computed from z. Then denote
the probability distribution of X(z) by D0 if z was drawn according to H0, and
by D1 otherwise.

Given an observation x for the random variable X(z), the attacker’s goal is
to decide whether x was drawn according to distribution D0 or D1. Note that
this is only possible if the distributions D0 and D1 differ. This difference is
measured by the statistical distance between D0 and D1, which can be defined
as

|D0 −D1| =
∑

x

|D0(x)−D1(x)| .

The larger the statistical distance is, the weaker is the pseudorandom generator.
For a distinguishing attack, a decision rule R : R → {0, 1} is used to decide
whether a given x was drawn according to D0 or D1. The quality of such a
decision rule is measured by the advantage

adv(R) =
1

2

∣

∣

∣

∣

Pr
x←D0

(R(x) = 0)− Pr
x←D1

(R(x) = 0)

∣

∣

∣

∣

.

The decision rule that achieves the greatest advantage is the maximum likeli-
hood rule, which outputs 0 iff D0(x) > D1(x). The advantage achieved by this
rule is 1

4 · |D1 − D2|. Note, however, that the distributions D0(x) and D1(x)
must be known in order to implement this rule, which is not always the case.

Sample randomness tests: A statistical test is a combination of a suitable
random variable and decision rule, where both must be efficiently computable.
Several statistical tests have been proposed that should be passed by every
pseudorandom generator. As an example, the following tests due to Beker and
Piper [4] formed the basis for the FIPS 140-2 statistical tests of randomness
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[94], until the specification of concrete test procedures was removed from the
standard in december 2002.

• Poker test: For values m ¿ s, a random bitstring is expected to contain
all possible bit patterns i of length m equally often. Let k := b smc and
divide the bitstring z into k non-overlapping parts of length m. If the
number of occurrences of i is denoted by si, the random variable

X =
2m

k





(1..1)
∑

i=(0..0)

s2i



− k ,

follows a χ2 distribution1 with 2m − 1 degrees of freedom for random
sequences.

A special case is m = 1, which tests whether the number of zeroes roughly
equals the number of ones in the sequence. With m = 1 and k = s, the
random variable simplifies to

X =
(s0 − s1)2

s

and follows a χ2 distribution with 1 degree of freedom. This case is also
known as frequency test or monobit test.

• Runs test: A run is a maximum-length substring that consists only of
zeroes (gap) or ones (block). Denote by Gi and Bi the number of gaps
and blocks of length i, respectively. Then for k ¿ s and 1 ≤ i ≤ k, a
random sequence should have the property that Gi and Bi should be close
to the expected value, which is ei = (s − i + 3)/2i+2. Thus, the random
variable

X =

k
∑

i=1

(Bi − ei)2
ei

+

k
∑

i=1

(Gi − ei)2
ei

should follow a χ2 distribution with 2k− 2 degrees of freedom for random
bitstrings.

• Autocorrelation test: A random sequence should bear no similarity to its
shifted versions. For a given shift d, 1 ≤ d ≤ bn2 c, this is measured by the
hamming distance

Dd =

s−d−1
∑

i=0

zi ⊕ zi+d .

For random bitstrings, Dd is ( s−d2 , s−d4 ) normal distributed, implying that

X = 2

(

Dd −
s− d
2

)

/
√
s− d

follows a standard normal distribution.
1Details on the χ2 distribution and its use for testing purposes can be found in any textbook

on statistics.
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Other tests have been proposed by Golomb [56], Beker and Piper [4], Knuth
[68], Maurer [77], and many others. Again, remember from section 4.1 that such
tests are necessary, but by no means sufficient criteria for good pseudorandom
sequences.

4.3 Period and linear complexity

Remember that a pseudorandom generator is a finite state machine with at most
2l inner states. Thus, an output sequence generated by such a generator must
become cyclic after at most 2l output bits. As a consequence, the more signif-
icant bits of the sequence can be modelled as a function of the less significant
bits by a suitable recurrence relation.

Let R be a recurrence relation with xi = R(xi−1, . . . , xi−k). Then k is
denoted as the length of R. If an output stream can be described by such a
relation and if the attacker has at least k consecutive output bits at his disposal,
he can easily predict the full output sequence. In the following, two particularly
simple types of recurrences will be discussed.

Period: Consider an infinite bitstream z = (z0, z1, . . .). If there exist values
ρ, θ ∈ N such that zi = zi+ρ for all i ≥ θ, the sequence is said to be ρ-periodic
with pre-period θ. The smallest value ρ for which z is ρ-periodic is called the
least period or simply period of z.

Since pseudorandom generators have at most 2l inner states, it holds that
θ+ ρ ≤ 2l. Since for all i ≥ θ+ ρ, the attacker can use the recurrence zi = zi−ρ
to predict additional bits of the output stream, it is paramount that at most
θ+ρ output bits are generated with the same key. Thus, all sequences generated
by a pseudorandom generator should have large periods.

Linear complexity In some cases, the periodic part of the sequence z can
be described by a linear recurrence relation R such that k < ρ. The length k
of the shortest such linear recurrence is denoted as linear complexity2 LC(z).
Put another way, the linear complexity is the length of the smallest LFSR that
generates the sequence z. Note that the period recurrence itself is a linear
recurrence, such that LC(z) ≤ ρ.

There exists an efficient algorithm by Berlekamp and Massey [76] that con-
structs the shortest linear recurrence describing z. Since this algorithm needs
only 2 · LC(z) output bits and takes only O(LC(z)2) computational steps, an
attacker can easily simulate an output sequence with a low linear complexity by
a linear relation. Thus, high linear complexity is a necessary requirement for all
sequences generated by a pseudorandom generator.

2Sometimes also the term linear equivalence is used.



Chapter 5

Specific Attacks

5.1 Two sample generators

As discussed in section 4, in order to apply a specific attack to a generator,
its inner workings have to be known. This, however, does not mean that the
wheel has to be re-invented for every generator. A number of attack techniques
are known that can be used against classes of PRGs, implying that resistance
against such attacks is a minimal requirement for any such generator.

In order to illustrate the workings of these attacks, two simple pseudorandom
generators will be considered in the next two chapters: The Geffe generator and
the {1, 2}-clocked generator. For both generators, the underlying LFSRs can
be chosen such that resistance against the generic attacks presented in chapter
4 is provided.

Throughout the descriptions, LFSRs are denoted by capital letters. The
length of LFSR X is denoted as lX , and the output sequence generated by X
is x = (x0, x1, . . .).

Geffe generator: The Geffe generator was introduced in [40]. It is a nonlinear
combination generator, as discussed in subsection 3.3. It consists of three m-
LFSRs A,B and C, producingm-sequences a, b and c. Output bit zi is generated
using the Boolean function

zi = (ci ∧ ai) ∨ (ci ∧ bi)
= ci · ai ⊕ ci · bi ⊕ bi .

This means that zi = ai if ci = 1, and zi = bi otherwise. Thus, ci is denoted as
control bit and register C as control register. For an illustration of the generator,
see figure 5.1.

{1, 2}-clocked generator: This generator is a special case of the basic clock-
controlled shift register arrangement proposed by Gollmann and Chambers in
[55]. It consists of two m-LFSRs A and C, where C is called the control register

27
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a
if c  =1

output a

else
output b
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zi

LFSR A
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LFSR B

Figure 5.1: Geffe Generator

of the arrangement. If ci = 0, register A is clocked by one step; otherwise, A
is clocked by two steps. Thus, the generator is sometimes named step1-step2
generator. The output is taken directly from register A, meaning that zi = as(i),

where s(i) =
∑i

k=0(ck+1) = (
∑i

k=0 ck)+ i+1. An alternative description is as
follows: Given the inner bitstream a and a pointer to the last used bit, the next
output bit zi is obtained by deleting ci bits from a and using the next available
bit as output. An illustration of the generator is given in figure 5.2.

delete c  bits 
a

c

z

LFSR C

LFSR A

i

i
i

s

Figure 5.2: {1, 2}-Clocked Generator

5.2 Guessing attacks

Brute force search: In the context of pseudorandom generators, a brute
force search is conducted by guessing all l bit of the inner state. For each of his
guesses, the attacker runs the generator to generate l output bits and compares
the result with the known output stream. If they differ in at least one bit, the
guess is discarded as being wrong. Otherwise, the guess is added to the set of
key candidates. For a generator that passes the standard statistical tests (see
section 4.2), the number of false guesses in this set should be close to zero if
the number of output bits available to the attacker is large enough. If there
exists more than one key candidate, the correct one is determined by running
the generator to decrypt all the message.

Remember from section 2.3 that the attacker is not able to conduct a com-
plete brute force attack. Thus, valid attacks in our security model must use
strictly less computational steps than are necessary to run the generator 2l

times. One option for such an attack is as follows: The attacker conducts a
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brute force attack over part of the inner state, tries to derive as much informa-
tion as possible, and carries on. The following are examples for such attacks.

Guess-and-verify: First, the attacker guesses l′ < l bit of the inner state. If
it is possible to efficiently discard a fraction q of these guesses as being wrong
(0 < q < 1), the attacker is left with only (1−q) ·2l′ candidate partial guesses. If
for each such candidate, he does a complete search over the remaining l− l′ bit,
he ends up with a total running time of 2l

′

+(1− q) · 2l′ · 2l−l′ = 2l
′

+(1− q) · 2l
computational steps. If q > 2l

′−l, the computational effort for this attack is
strictly less than 2l. To illustrate, consider the following attack on the Geffe
generator:

• Geffe generator: The attacker guesses the inner states of registers A and
B. Thus, he can construct the complete sequences a and b. Whenever ai =
bi 6= zi for a given index i, he has identified a wrong guess. Given enough
output stream (slightly more than 4·(lA+lB) bit), he can uniquely identify
the correct seed for A and B amongst the guesses. It only remains to do
a brute force search over C, yielding a total running time of 2lA+lB +2lC .
If lA = lB = lC = l/3, the attack takes roughly 22l/3 computational steps.

Guess-and-determine: Here, too, the attacker guesses l′ < l bit of the seed.
Instead of verifying directly, however, he tries to construct additional parts of
the inner state from the output stream. Only after doing so, the brute force
search is completed by guessing the missing part of the seed. If on the average,
the attacker derives m bit from the output stream, this attack takes roughly
2l
′ · 2l−l′−m = 2l−m computational steps. As an example, consider the Geffe

and {1, 2}-clocked generators:

• Geffe generator: The attacker guesses the complete inner state of register
C. Now, however, he does know which output bit zi stems from which
register A or B. As long as these bits are part of the seed, the attacker does
not have to guess this part anymore. Assuming that lA = lB = lC = l/3,
the attacker obtains an average of l/3 output bits that can be written
directly into registers A and B. Thus, the overall work effort of the attack
is only 2l−l/3 = 22l/3.

• {1, 2}-clocked generator: Here, too, the attacker guesses the complete
inner state of register C. In this way, for each bit zi, he can determine
the corresponding position k in the inner bitstream a = (a0, a1, . . .). Note
that on the average, 2 out of 3 seed bits of register A can be read from the
output stream. Thus, the attacker has a total effort of 2l−2lA/3 guesses. If
lA = lC = l/2, this yields a computational effort of 22l/3 generator runs.

Linear consistency test The linear consistency test (LCT) was proposed by
Zeng, Yang and Rao [125]. It can be considered as a combination of the above
guessing attacks, making use of the linearity of the inner bitstreams. To carry
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out the test, the attacker guesses l′ < l bit of the inner state in such a way that
the relationship between the remaining bits and the output bits can be modelled
by a system of linear equations. If this system is contradictory, the initial guess
is discarded. If it has maximum rank, it can be solved, yielding the unknown bits
of the key candidate. On the other hand, if some linear equations are linearly
dependend on the others, it is usually possible to construct additional equations
until the system has full rank and can be solved. Remembering that solving a
system of linear equations in n unknowns requires O(n3) computational steps
using Gauss’ elimination algorithm, it follows that the running time of this
attack is in O(2l

′ · (l − l′)3). For illustration, consider the following examples:

• Geffe generator: As in the case of a guess-and-determine attack, the at-
tacker guesses the full inner state of register C. Thus, for each output
bit zi, he knows whether it stems from the inner bitstream a or b. In a
first step, consider lA output bits that stem from register A, i.e., ai = zi.
Now note that each bit ai can be written as linear combination of the
initial state (a0, . . . , alA−1), yielding one linear equation. Given slightly
more than lA such output bits, the resulting system of equations is either
contradictory or has full rank with high probability. Thus, the attacker
can either discard his guess for C, or he can construct the complete inner
state of register A. In a second step, he proceeds analogously for register
B. Thus, the overall running time of the attack is in O((lA

3 + lB
3) · 2lC ).

• {1, 2}-clocked generator: Analogously, the attacker guesses the full inner
state of register C. For each output bit zi, this yields an index j such
that zi = aj . Again, if all aj are seen as linear combinations of the initial
state (a0, . . . , alA−1), slightly more than lA output bits should suffice to
construct a system of linear equations that is either contradictory or can
be solved uniquely. The running time of this attack is in O(lA

3 · 2lC ).

A more detailed description and important extensions of the linear consistency
test will be given in chapter 7.

5.3 Algebraic attacks

Preliminaries: While the linear consistency test uses linear equations to re-
construct the seed of a pseudorandom generator, algebraic attacks use nonlinear
equations. A nonlinear equation in x1, . . . , xl is of the form

n
⊕

i=1

Mi = c ,

where c ∈ {0, 1} is a constant, n is a positive integer and the Mi are monomials
of the form

Mi =

l
∏

j=1

xj
c(i,j) , c(i, j) ∈ {0, 1} .
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The degree di of a monomial Mi is defined as di =
∑l

j=1 c(i, j). The degree of
an equation is the maximum over all monomial degrees di in the equation. Anal-
ogously, the degree of a system of equations is the maximum over all monomial
degrees in the equation system.

In principle, nonlinear equations can be used to describe each output bit
as a nonlinear combination of the generator’s seed. There are, however, two
problems associated with this approach:

• While a linear equation in variables x1, . . . , xl can have at most l mono-
mials, a nonlinear equation of degree d has up to

Nd :=

d
∑

k=1

(

l

k

)

∈ O(ld)

monomials. In the worst case, for d = l, up to 2l monomials can occur in
one single equation. Thus, working with nonlinear equations can only be
efficient if the number of monomials in each equations is not too large.

• Even worse, solving systems of nonlinear equations is known to be NP-hard
[39]. Thus, no algorithm that efficiently solves all systems of nonlinear
equations exists under the current state of research in computer science.
On the other hand, finding such a universal algorithm is not the attacker’s
goal anyway. In our model, he is successful if he can solve a significant
part of the systems of equations that occur in this special context.

The linearisation technique: Assume that the attacker has a system of
nonlinear equations at his disposal, where each equation describes the depen-
dency between one output bit and the corresponding seed bits. He could try
to solve this system by linearisation, replacing each nonlinear monomial by a
single dummy variable. In this way, he ends up with a system of linear equations
which can be solved using standard techniques like the Gaussian eliminiation
algorithm. Finally, the dummy variables have to be replaced by the original
monomials again, in the hope that a unique solution (or at least a small set of
solution candidates) can be identified.

Note that during linearisation, the number of variables in the system of
equations increases dramatically. Thus, the attacker needs up to Nd linearly
independent linearised equations, i.e., the number of required output bits can
be very large. At the same time, the attacker is throwing away valuable infor-
mation contained in the monomials of high degree. For an example, consider
the information loss when replacing the nonlinear equation x1x2x3x4 = 1 by
the linearised equation M1 = 1.

The extension technique: An important improvement over mere linearisa-
tion is the extension technique proposed by Kipnis and Shamir [67]. Given a
system of nonlinear equations, the attacker constructs additional equations by
multiplying the existing ones with monomials of small degree. If the degree of
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the resulting equation is not greater than a specified threshold, the equation is
added to the system of equations. In this way, a nonlinear system with a lot of
redundant information is generated.

In a second step, the extended system of equations is linearised as described
above. This time, however, the attacker has a lot more equations at his disposal,
reducing the number of output bits required. Still, for the attack to work, the
original system of equations has to be over-specified. In [25], some evidence
(though no formal proof) is given that the attack requires more than l output
bits, but that the number of additional bits is small.

Sample attack: Remember that for the Geffe generator, an output bit zi can
be described by the nonlinear equation

zi = ci · ai ⊕ ci · bi ⊕ bi . (5.1)

Thus, each output bit contributes one equation of degree 2 to the system of
equations. If the conjecture by Kipnis and Shamir is correct, it would suffice

to collect slightly more than N2 = l2+l
2 output bits in order to build a solv-

able system of equations of this basic type. Using the Gaussian elimination
algorithm, the computational effort for such an attack would be in the order of
O(N2

3) = O(l6), yielding a polynomial time attack on the Geffe generator.

However, using the extension technique, the number of output bits required
can be reduced even further. As an example, multiplying equation (5.1) with
ci, ai · bi, and ci · ai (resp.) yields the new equations

0 = ci · ai ⊕ zi · ci ,
0 = ai · bi ⊕ zi · ai · bi ,
0 = ci · ai ⊕ zi · ci · ai ,

all of which also have degree 2 once zi is replaced by a bit value from the
output stream. Now, each output bit contributes 4 equations to the system of
equations, reducing the overall number of known output bits needed to perform
the attack.

Concluding remarks: The attack presented above is the most simple form
of algebraic attack. It is sometimes denoted as XL attack, from its components
eXtension and Linearisation. Note, however, that more efficient variations exist,
although it seems hard to find precise estimates for the required running time
or output bits.

All aspects of algebraic attacks are currently a very active field of research.
Research topics include how to find nonlinear equations of low degree, how to
solve these equations as efficiently as possible, how to estimate the resources re-
quired by the algorithms, how to apply algebraic attacks against specific ciphers,
and others.
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5.4 BDD attacks

General idea: In [71], an attack technique based on binary decision diagrams
(BDDs) was presented. A BDD is a graph-based representation of a Boolean
function, as described, e.g., in [119]. In particular, the attack uses so-called
free BDDs (or FBDDs), which have the special property that representations of
two functions F1 and F2 are efficiently merged to F1 ∧ F2.

1 Another important
property is that given an FBDD representation of a function, all satisfying
assignments to its input variables can be efficiently constructed.

In a BDD attack, the goal is to reconstruct the output of the LFSRs, denoted
as the internal bitstream y. This bitstream has to meet two kinds of conditions:

1. It has to be a correct output of the LFSRs, i.e., all linear dependencies
between the internal bits must be met.

2. It must lead to the correct output stream, given the nonlinearity mecha-
nism (clock control, nonlinear filtering etc.) for the generator considered.

Note that each linear dependency and each output bit defines one Boolean
function F such that F (y) = 1 iff y meets the condition. In a BDD attack, each
condition is represented by an FBDD. These FBDDs are subsequently merged
to represent one single function whose variables are the bits of the internal
bitstream and which outputs 1 for all candidate bitstreams that are consistent
with the linear recurrences and the output bits. If the number of output bits
is large enough, the number of satisfying assignments to this FBDD gets small,
and so does its size. Now the satisfying candidates can be efficiently constructed
from the FBDD, and given these bits of the internal bitstream, the attacker also
obtains the initial states of the LFSRs, as discussed in section 3.2.

Performance issues: The performance of the BDD attack depends on the
nonlinearity mechanism used. Given the internal bitstream, the information
rate α is the information (in bit) that one bit of a randomly chosen output
stream gives about the internal bitstream. Then the running time and memory

requirements of a BDD attack can be estimated to be in O(2
1−α
1+α l). For the

sample generators, this implies the following:

• Geffe generator: The information rate is α = 1/3. Thus, running time

and memory required are in O
(

2
2/3
4/3
·l
)

= O(20.5·l).

• {1, 2}-clocked generator: The information rate is α = 2/5. Consequently,

the resources required can be estimated to be in O
(

2
3/5
7/5
·l
)

= O(20.43·l).

1Note, however, that as with all representation of a Boolean function in n variables, an
FBDD can have a size of up to 2n. Merging is only efficient in the size of the representations
for F1 and F2.
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Note that the resource estimate is asymptotical and that only an upper
bound is provided. However, experimental results by Schleer [107] and Stege-
mann [115] indicate that both running time and memory required for an imple-
mentation of the attack are indeed very close to the theoretical estimate.

5.5 Time-Memory-Data tradeoffs

By definition in section 2.3, the attacker is not able to conduct a brute force
search over the key space. He may, however, attempt a search over a small
part of the key space, hoping that the produced output string is observed in
the known output stream. As long as the available output stream is small (say,
little more than l bit), his probability of success is negligibly small. The picture
changes, though, if a sufficiently long string of output bits is available. In this
case, the attacker can make use of a time-memory-data tradeoff attack, with
the probability of finding a pre-computed value amongst the observed output
stream being close to one.

The birthday problem: Such collision-based attack techniques are surpris-
ingly successful not only in PRG cryptanalysis, but also in attacking other
cryptographic primitives like block ciphers or hash functions.2 The mathemat-
ical reason for this success lies in a number of results from probability theory
that have been termed birthday problem. The cryptographically most relevant
instances of the birthday problem are defined as follows:

1. Collision within one set: Let an urn contain M balls numbered 1 to M .
One ball is drawn at a time, with replacement, the number is written
down. What is the expected number N of draws until the first collision
occurs, i.e., the same ball is drawn for the second time?

2. Collisions between two sets: Let an urn contain M balls numbered 1 to
M . First, a set of N1 balls is drawn without replacement, the numbers are
written down. Then the balls are placed back into the urn. Now balls are
drawn, with replacement, and the number is compared to the numbers of
the list. What is the expected number N2 of draws before a collision with
the list occurs?

Since exact collision probabilities for the birthday problem are difficult to handle
in practice, asymptotic estimates are being used for cryptographic purposes. In
the case of a collision within one set, the expected number of necessary draws
can be approximated as N ≈

√
M for large values of M . For collisions between

two sets, the estimate N2 ≈M/N1 is used.

Basic Time-Memory tradeoff attack: In the precomputation phase, the
attacker selects N1 different keys at random, and for each key computes the first

2For definitions, see, e.g., [86].
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l output bits produced by the generator. The resulting tupel of output string
and key is saved in a hash table, indexed by the output string. During realtime
phase, the attacker is given N2 + l − 1 bits of generator output. From this,
he generates N2 overlapping output strings of length l. Each string is looked
up in the hash table, and if a match is found, the corresponding key can be
read directly from the table. Note that if N1 ·N2 > 2l, the attacker is likely to
succeed using this method.

The computational effort during precomputation is determined by running
the generator N1 times and storing 2l ·N1 bits in a hash table. In the realtime
phase, an expected N2 table lookups generate the main bulk of work. Thus,
the overall effort is roughly N1 + N2 computational steps. In the best case,
N1 ≈ N2 ≈ 2l/2, allowing the attacker to break the system in roughly 2l/2+1

computational steps, using 2l · 2l/2 bits of memory.

Improvements: In the basic time-memory tradeoff attack, both time and
memory requirements for the pre-computation phase are in the order of N2. In
practice, however, computation time is considerably cheaper than memory. This
problem is solved by the time-memory-data tradeoff [11], which allows for a more
sophisticated choice of the attack parameters. Using this technique, the param-
eters T (realtime computation time), P (pre-processing computation time), D
(number of known output bits), and M (number of memory bits available) can
be chosen in any way, as long as the conditions P = 2l/D, D2 ≤ T ≤ 2l, and
TM2D2 = 22l are satisfied.

As another problem arising in practice, realtime computation time is deter-
mined by the number of table lookups. Since the table of samples is very large,
it must be stored on hard disk, and disk access is slower than RAM access by
a factor of about 4 million (or 222). While in theory, this constant factor is
often neglected, it slows down a practical attack considerably. A solution to
this problem is sampling, where only states that generate certain output pat-
terns are stored on disk [11]. As a consequence, only those output strings that
display this pattern have to be looked up, keeping the overall computational
time constant, but reducing the number of disk accesses.
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Chapter 6

Correlation Attacks

6.1 Basic correlation attack

Consider the Geffe generator or any other PRG based on a number of LFSRs and
a nonlinear combining function g. While g must be balanced for all generators
that pass the statistical tests given in section 4.2, there is a more subtle danger.
For some choices of g, a correlation between an input bit a and the corresponding
output bit z can be observed. As an example, consider the combining function

g(a, b, c) = (c ∧ a) ∨ (c ∧ b)

of the Geffe generator. While the output is balanced, the probability that
z = g(a, b, c) = a is 3/4.

An analogy to coding theory: For any combination generator and any
input bit a to the combining function g, the relation between a and output bit
z can be modelled in a coding theoretic setting as a noisy channel,1 as shown in
figure 6.1. Each output bit z can be seen as a noisy version of the input bit a,

a

e

z

Figure 6.1: A noisy channel

i.e., z can be modelled as z = a ⊕ e for some noise bit e with Pr(e = 1) =: pe.
Let z0, z1, . . . , zn−1 (n > l) be the known output bits. It is known that the
corresponding vector (a0, a1, . . . , an−1) was generated by an LFSR of length lA.

1For an introduction to the theory of linear codes, see any textbook on coding theory, e.g.,
[96],[117].

37
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Thus, (a0, a1, . . . , an−1) can be considered as a codeword in a linear code, with
lA information bits and n− lA checking bits. The problem of reconstructing the
contents of register A is equivalent to finding the codeword (a0, a1, . . . , an−1)
with the least Hamming distance to the known output word (z0, z1, . . . , zn−1).

However, the general problem of reconstructing the nearest codeword in
an arbitrary linear code is NP-hard [7]. In coding theory, this problem was
solved by deliberately choosing linear codes in such a way that decoding is
easy. A surprising consequence was that when the duality of coding theory
and cryptanalysis was discovered by Siegenthaler in 1984 [111, 112], no generic
algorithms for the decoding of arbitrary linear codes were known. Ever since,
cryptographers have developed algorithms for the decoding problem, enabling
increasingly powerful correlation attacks.

Siegenthaler’s attack: The first algorithm for correlation attacks was pro-
posed by Siegenthaler [112]. Consider a combining function g and input variable
a such that pe := Pr(a 6= z) < 1/2. Given output bits z0, . . . , zn−1, the attacker
proceeds as follows. He guesses the complete contents of register A and gener-
ates n bits of internal bitstream a0, . . . , an−1. Then, he computes the Hamming
distance

Da =

n−1
∑

i=0

(ai ⊕ zi) ,

where ⊕ denotes bitwise addition over GF(2), while the overall sum is computed
over the integers.

Note that the distribution of Da differs, depending on whether the guess for
A is correct or not. If the guess was right, Da is binomially distributed with
expected value µ = n · pe and variance σ2 = n · pe · (1 − pe). If it was wrong,
however, the vector (a0, . . . , an−1) behaves like a random n-bit string, leading
to µ = n/2 and σ2 = n/4.

These differing distributions yield a statistical test on our guess for A. De-
pending on the values for n and pe, the attacker will set a threshold D′ such
that a guess for A is accepted as a partial key candidate if Da > D′. Note that
the distinguishing power of this test increases with growing n and |pe− 1/2|. In
the best case, exactly one candidate guess for A will be derived, immediately
yielding the correct contents of register A. Otherwise, several candidate guesses
remain, making additional tests necessary in order to identify the correct one.
Nonetheless, if n and |pe − 1/2| are large enough, the number of steps required
to retrieve the contents of register A do not significantly differ from 2lA .

Observe that Siegenthaler’s technique is a variant of a guess-and-verify at-
tack, as described in section 5.2. However, in the case of the Geffe generator, the
overall running time of a correlation attack is only 2lA + 2lB + 2lC (as opposed
to 2lA+lB +2lC steps that are required for the simple attack presented in section
5.2). This advantage is obtained at the expense of a small probability of error
which can not occur with a guess-and-verify attack.
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Extensions and limitations: The above attack technique can be extended
to correlations between the output z and linear combinations of input bits x(i).
If the generator consists of k LFSRs X(1), . . . , X(k) and there exists an index
set I ⊂ [k] such that

Pr

(

⊕

i∈I
x(i) 6= z

)

<
1

2
, (6.1)

then the attacker can guess the initial states of all registers X (i) with i ∈ I.
Next, he generates the first n bits generated by each such register and calculates

xj =
⊕

i∈I x
(i)
j for j = 0, . . . , n− 1. Computing the Hamming distance between

(x0, . . . , xn−1) and (z0, . . . , zn−1), the attack proceeds as above. Note, however,
that the computational effort for this phase has gone up to 2λ steps, where
λ =

∑

i∈I lX(i) .
An obvious protection against correlation attacks that guess at most r reg-

isters (1 ≤ r < k) is the choice of a combining function g that is correlation-
immune of r-th order, i.e., no set I ⊂ [k] with |I| ≤ r exists that meets condition
(6.1). It is known, however, that a high correlation-immunity leads to a low lin-
ear complexity, and vice versa [104]. Thus, all practical combining generators
with an acceptable linear complexity will be vulnerable against correlation at-
tacks to some extend.

6.2 Fast correlation attacks

Underlying idea: Consider again the case of a combination generator where
the output ai of a single register A is correlated with the output zi of the gen-
erator. The attack proposed by Siegenthaler basically requires a brute force
search over all possible initial states of register A, yielding an effort of 2|A| com-
putational steps. In [81, 82], Meier and Staffelbach proposed to use techniques
from coding theory [38] in order to speed up the reconstruction of register A.

First observe that each bit of the vector a = (a0, a1, . . . , an−1) produced by
A is part of a number of linear relations. For example, if the simple feedback
recurrence ai = ai−lA ⊕ ai−lA+1 is used, each bit ak is contained in the three
relations

ak = ak−la ⊕ ak−la+1

ak+lA = ak ⊕ ak+1

ak+lA−1 = ak−1 ⊕ ak .

Additional linear relations can be constructed, for example by addition of known
ones. Note that the number of such relations grows in n, but that most of them
will contain a large number of different variables.

Now remember that the output vector z = (z0, zi, . . . , zn−1) can be seen
as the intermediate vector a = (a0, a1, . . . , an−1), masked by an error vector
e = (e0, e1, . . . , en−1) with Pr(ei = 1) < 1/2. The basic observation is as
follows: If e = ~0, then z = a and z meets all linear relations that are fulfilled
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for a. If only one bit ek = 1 in e, all equations containing zk are contradictory,
while all others are satisfied. But even if the Hamming weight of e increases,
some linear relations in the zi will be fulfilled. As a rule of thumb, zk = ak holds
for a given k if the share of satisfied relations amongst those that contain zk is
large. On the other hand, we expect zk 6= ak if the share of satisfied relations
is small. This simple observation can be used for a variety of reconstruction
algorithms for the inner state of A.

An exponential time algorithm: Note that in order to reconstruct a, it
is sufficient to reconstruct lA bits of a. The remaining bits can be computed
using systems of linear equations. A simple algorithm proposed by Meier and
Staffelbach [81, 82] proceeds as follows:

1. Construct a reference set of linear relations in the zi of equal Hamming
weight.

2. For each zi, i = 0, . . . , n − 1, compute the probability p∗ that this bit is
correct, given the number of linear relations it satisfies.

3. Choose lA bits for a reference guess â by picking those zi with the highest
values p∗.

4. Find the correct guess by modifying â by 1, 2, . . . bit and constructing the
full vector a. Compute the Hamming distance between a and z. If this
distance is close to the expected value, output a and stop.

The average running time of this algorithm is determined by step 4, which takes
about

Nd =
d
∑

i=0

(

lA
d

)

trials, with d being the expected number of wrong digits in the reference guess
â. Since this value is clearly smaller than lA, reconstructing register A takes
2c·lA steps with c < 1.

A polynomial time algorithm: A number of improvements over the above
algorithm are possible. In particular, note that when correcting the guess â in
step 4, all bits are treated equal. However, it may be assumed that those bits
that satisfy a large number of equations are more likely to be correct than those
that satisfy less equations. Thus, a variant algorithm also proposed by Meier
and Staffelbach [81, 82] proceeds as follows:

1. Construct a reference set of linear relations in the zi of equal Hamming
weight.

2. For each zi, i = 0, . . . , n − 1, compute the probability p∗ that this bit is
correct, given the number of linear relations it satisfies.
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3. Negate those bits zi whose probability p∗ is under a certain threshold. If
the resulting vector z does not satisfy all relations, go back to step 2.

Note that this description is a simplified version of the full algorithm. Nonethe-
less, in all cases the running time for step 1 is linear in the length of the registers.
Step 2 and 3 are even independent of the register length, instead, the running
time is determined by the Hamming weight of the linear relations used, by the
error probability Pr(ei = 1) and by the number n of output bits available. While
no closed mathematical expression for the running time could be found, it was
observed that for relations of small weight (up to 8), the attack was extremely
fast in practice. As a consequence, the use of LFSRs with a small number of
feedback taps is strongly discouraged.

Improvements: Following the publication of [82], a number of improvements
have been proposed. These can be subdivided into two categories:

• In step 1 of the above algorithm, linear relations of low degree have to
be found. The efficiency of steps 2 and 3 can be increased if more care is
spent on this preprocessing step. Proposals on how to find more or better
linear relations were given, e.g., by Mihaljević and Golić [89], Chepyzhov
and Smeets [18], and Penzhorn [95].

• In addition, the iterative decoding procedure in step 2 and 3 was improved
by several proposals, such as the algorithms given by Zeng et al. [124, 126],
Mihaljević and Golić [89], Chepyzhov and Smeets [18] or Živković [135].
As opposed to the original algorithm, many of these proposals also contain
a proof of their convergence.

However, all of these proposals are efficient only if the feedback vectors of the
LFSRs under consideration have low weight. This limitation was done away
with by a set of completely different algorithms to be discovered in subsequent
years. Johansson and Jönsson use convolutional codes [62, 64], turbo codes [61]
or algorithms from learning theory [63] in order to reconstruct the inner state.
Canteaut and Trabbia [16] proposed an algorithm to construct linear relations
of low weight for arbitrary feedback vectors. Chepyzhov, Johansson and Smeets
[17] approximate the LFSR output by a linear code of smaller dimension, but
with higher error probability. A similar approach is chosen by Filiol [34], who
proposes a d-decimating attack, considering only every d-th output bit of the
LFSR.

Depending on the combination generator considered, the above attack tech-
niques can be of varying efficiency. For the majority of generators, however,
the most efficient algorithm to date is a combination of several of the above
concepts, as proposed by Mihaljević, Fossorier and Imai [87, 88] and improved
by Chose, Joux and Mitton [19].
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6.3 Correlation attacks and memory

Correlation immunity: The efficiency of correlation attacks makes it neces-
sary to harden combination generators against such attacks. The most obvious
solution is to choose the combining function g in such a way that no correla-
tions between the output and a linear combination of a small number of internal
bits exist. More formally, a function g : {0, 1}k → {0, 1} with input vector
x = (x(1), . . . , x(k)) is said to be correlation immune of k’-th order if no linear
combination L of up to k′ < k variables exists such that Pr(L(x) = g(x)) 6= 1/2.
The following tradeoffs, however, make it difficult to strengthen the generator
in this way:

• It was shown by Siegenthaler, Xiao and Massey in [111, 122] that an
increase in correlation immunity leads to a decrease in linear complexity,
and vice versa. Thus, a highly correlation immune combination generator
can be attacked using the Berlekamp-Massey-algorithm (see section 4.3).

• Let {Li | 1 ≤ i ≤ 2k} be the set of linear functions in up to k variables.
The correlation coefficient between g and Li is defined as ci = 2 · pi − 1,
with pi = Pr(Li(x) = g(x)). It was proven by Meier and Staffelbach [83]
that

2k
∑

i=1

ci
2 = 1 . (6.2)

This means that if g has high correlation immunity (i.e., g is not correlated
to any linear function in few variables), it is at the same time strongly
correlated to linear functions with a higher number of variables. Thus, by
choosing the optimal algorithm, a correlation attack is always possible.

Improved correlation immunity from nonlinear memory: In order to
destroy the dependency between correlation immunity and linear complexity,
Rueppel [101] introduced the generator with (nonlinear) memory. As described
in section 3.3, the memory of such a generator consists of two parts: While the
majority is made up of LFSRs, some bits are updated by a nonlinear function
f2. It was shown that for a good choice of f2, such a function can achieve
maximum correlation immunity while at the same time having maximum linear
complexity.

However, it was proven by Meier, Staffelbach, and Golić in [84, 43, 45] that
for such a generator, too, a tradeoff similar to (6.2) can be found. This time,
however, several consecutive input bits from each register have to be considered,
increasing the number of variables in the linear approximation function L. As
a consequence, correlation attacks against combiners with memory are indeed
less efficient, but not entirely impossible as was hoped for originally.
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6.4 Correlation attacks and clock control

A new notion of correlation: Instead of using nonlinear memory, some
LFSR-based generators use nonlinear clocking, i.e., some or all LFSRs are ir-
regularly clocked, depending on the internal state of the generator. Note that
this way, the attacker cannot see which internal bit xi contributes to which out-
put bit zj . Thus, measuring the Hamming distance between (x1, . . . , xn) and
(z1, . . . , zn) becomes meaningless, and correlation attacks in the above sense are
no longer applicable.

However, other measures of correlation can be used. Golić and Mihaljević
[50, 51] proposed to replace the Hamming distance by the so-called Levenshtein
distance. This distance measures the minimum number of elementary operations
(insertion, deletion, and substitution) required to transform one sequence into
a prefix of the other. Given such a notion of distance, the standard correlation
attack as defined by Siegenthaler can be deployed.

Correlation attacks: Depending on the cipher design, some edit operations
may not be allowed. Thus, it may be necessary to define a so-called Constrained
Levenshtein Distance (CLD). Note, for example, that the Hamming distance is a
CLD where only substitutions are allowed. For the {1, 2}-clocked generator, only
deletions are applicable with the additional constraint that no two consecutive
internal bits must be deleted. In any case, an efficient dynamic programming
algorithm for the computation of the CLD was given in [51]. Given a target
sequence of length n, the algorithm computes the CLD in the order of O(n2)
computational steps.

A number of modifications of this attack have been proposed against specific
generators [134, 54, 53, 49], but the general method remains the same. In [44],
Golić proposes an algorithm similar to the fast correlation attack by Meier and
Staffelbach. However, step 1 of the algorithm (finding suitable linear relations)
proved to be difficult, except for very special generators. Thus, a full algorithmic
specification of a fast correlation attack on general irregularly clocked generators
remains an unsolved research problem down to the present day.
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Chapter 7

The Dynamic Linear
Consistency Test

7.1 Generators under consideration

The linear consistency test as introduced in [125] targets pseudorandom gener-
ators (PRGs) of the type defined in chapter 3. Such generators consist of two
components:

1. A linear unit that transforms the key bits into a sequence of intermediate
bits in a linear way. In most cases, the linear unit is an LFSR.

2. A nonlinear unit which transforms the intermediate bits into an output
stream in some nonlinear way, e.g., using nonlinear combining or clock-
control functions.

Thus, each output bit of such a PRG can be written as a unique, nonlinear
combination of key bits, since a) each output bit can be written as a nonlinear
combination of the intermediate bits and b) each intermediate bit can be written
as a linear combination of the key bits. Note, however, that in the case of clock-
controlled PRGs, the size of these nonlinear representations may be too large
to be actually written down.

Examples:

• For the Geffe generator, each output bit zi can be written simply as

– z0 = c0a0 ⊕ c0b0 ⊕ b0,
– z1 = c1a1 ⊕ c1b1 ⊕ b1,
– z2 = c2a2 ⊕ c2b2 ⊕ b2,
– . . .
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• For the {1, 2}-clocked generator, the first output bits zi have algebraic
representations as

– z0 = a1 ⊕ c0a1 ⊕ c0a2,

– z1 = a2 ⊕ c0a2 ⊕ c1a2 ⊕ c0c1a2 ⊕ c0a3 ⊕ c1a3 ⊕ c0c1a4,

– z2 = a3 ⊕ c0a3 ⊕ c1a3 ⊕ c2a3 ⊕ c0c1a3 ⊕ c0c2a3 ⊕ c1c2a3 ⊕ c0c1c2a3

⊕ c0a4 ⊕ c1a4 ⊕ c2a4 ⊕ c0c1c2a4 ⊕ c0c1a5 ⊕ c0c2a5 ⊕ c1c2a5

⊕ c0c1c2a5 ⊕ c0c1c2a6,

– . . .

It can be seen that the size of the algebraic representation is growing
rapidly with increasing index i.

If for any register X, a variable xi with i ≥ lX is used in an equation (i.e.,
xi is no longer a key bit), xi can be replaced by a linear combination of key
bits, making use of the feedback recurrence for register X. Thus, the number
of variables in the equations is always upper bounded by the total key length l,
while the number of equations is limited by the number of known output bits.

7.2 The linear consistency test revisited

As noted in section 5.2, the linear consistency test guesses part κ of the key
and verifies the correctness of the guess using a system of linear equations, as
described in figure 7.1. Keeping in mind the nonlinear representation of the
output stream, κ should be chosen such that after an assignment to κ is known,
the nonlinear equations become linear. In the above examples, it is easily seen
that for both the Geffe generator and the {1, 2}-clocked generator, the system
of equations becomes linear if all bits generated by register C are known. Thus,
it suffices to guess all possible assignments for register C in order to reconstruct
the full key.

Linear Consistency Test:
1. Choose a particularly useful subkey κ of length λ < l.
2. For all assignments κ′ for the subkey κ:
3. Derive the system of linear equations implied by κ′.
4. If the system of equations is consistent:
5. Save all solutions to the system as key candidates.
6. Else:
7. Discard κ′.
8. Test all key candidates by running the generator.

Figure 7.1: Linear consistency test
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Running time: The running time of the LCT attack is determined by the
assignment loop (steps 2 through 7) and the final testing phase (step 8). The
assignment loop is iterated 2λ times, with each loop requiring the solution of
a system of equations with l − λ variables. It was shown in [125] that if the
number of equations is slightly larger than the number of variables, the number
of consistent systems of equations is close to 1, and that the number of solutions
to such a system is close to 1 as well. Thus, the LCT requires O(2λ · (l − λ)3)
operations for steps 2 through 7 and O(1) steps for step 8.

7.3 A dynamic extension

It was first pointed out by Golić in [46] that the LCT method can be applied
in a more dynamic fashion. When attacking the pseudorandom generator A5/1
used in the GSM mobile phone standard, the necessary bits were guessed only
one at a time. However, no generalisation of this concept to other generators
was considered. This generalisation is a major contribution of this thesis and
will be discussed in the subsequent chapters.

As shown in section 7.2, the running time of the LCT is mainly determined
by the number of bits that have to be guessed in order to transform the nonlinear
system of equations into a linear one. Thus, it is important for the attacker to
keep the number of guesses as small as possible. One way to achieve this goal
is to guess key bits one by one instead of guessing a subkey κ all at once. In
this way, the system of linear equations can be built successively, and if an early
contradiction occurs, a whole set of key candidates can be discarded at once.
On the other hand, as soon as the system of equations reaches full rank, it can
immediately be solved in order to find the remaining key bits.

The backtracking algorithm: More formally, this procedure can be imple-
mented using a backtracking algorithm. A first version of such an algorithm
is described in figure 7.2. Let π : {0, . . . , l − 1} → {0, . . . , l − 1} be a suitable
permutation over the key bits, i.e., the attacker guesses the key bits in the order
kπ(0), kπ(1), . . .. The algorithm is started with an empty set M of linear equa-
tions, an empty assignment k = (∗, ∗, . . . , ∗) to the key bits, and with index
d = 0. It outputs all key candidates that are consistent with the nonlinear
equations, if any exist. Note that the algorithm always terminates, since for
d = l, all key bits have been guessed, and since each guess can be modelled as
a linear equation, the condition in line 5 is always met. In most cases, however,
the algorithm will terminate much earlier.

The behaviour of backtracking algorithms is often represented by a search
tree, where each call of Backtrack(M,k, d) is represented by a node, and
the relationship between calling node and called node is modelled by a directed
edge. When actually drawing such a tree, a leaf that contains a contradiction
will be marked by an underscore, while a leaf containing a system of equations
of full rank will be marked by a grey box.



50 CHAPTER 7. THE DYNAMIC LINEAR CONSISTENCY TEST

Backtrack(M,k, d)
1. For all new linear equations L:
2. Add L to M .
3. If a contradiction occurs:
4. Return “Contradiction”
5. If rank(M) = l:
6. Solve the system of equations.
7. Output solution as key candidate.
8. Return “Candidate complete”
9. For b = 0, 1:
10. kπ(d) ← b
11. Backtrack(M,k, d+ 1)

Figure 7.2: The backtracking algorithm

A toy example: Consider a Geffe generator with lA = lB = 2 and lC = 6.
The feedback recurrences are ai = ai−1⊕ai−2, bi = bi−1⊕ bi−2, and ci = ci−4⊕
ci−6. Assuming that output bits (z0, . . . , z5) = (1, 0, 0, 1, 0, 1) are available, the
following equations can be constructed:

1 = z0 = c0(a0 ⊕ b0)⊕ b0
0 = z1 = c1(a1 ⊕ b1)⊕ b1
0 = z2 = c2(a0 ⊕ a1 ⊕ b0 ⊕ b1)⊕ b0 ⊕ b1
1 = z3 = c3(a0 ⊕ b0)⊕ b0
0 = z4 = c4(a1 ⊕ b1)⊕ b1
1 = z5 = c5(a0 ⊕ a1 ⊕ b0 ⊕ b1)⊕ b0 ⊕ b1

We guess the key bits in the order (c0, . . . , c5, a0, a1, b0, b1). Figure 7.3 shows
levels d = 0, 1, 2, 3 of the resulting search tree and the systems of equations
available at that stage. Note that at level d = 3, two nodes contain a contradic-
tory system of equations, meaning that the partial key guesses leading to these
nodes, namely (0, 0, 0, ∗, . . . , ∗) and (1, 1, 1, ∗, . . . , ∗), cannot be correct.

7.4 Computational resources

Resources per function call: The memory that is required by each call to
the function Backtrack(M,k, d) is determined by the parameters M,k and
d. Note that 0 ≤ d ≤ l, meaning that dlog(l + 1)e bits suffice to store d. The
partial key k requires l bits, and the system of equations needs at most l · (l+1)
bits if only linearly independent equations are stored. Thus, the total number
of memory bits required for one call to the function Backtrack(M,k, d) is in
O(l2).

If linear equations as required by step 1 of the function Backtrack(M,k, d)
can be constructed efficiently, the running time of one function call is determined
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Figure 7.3: The nodes of a dynamic LCT search tree

by elementary operations on systems of binary equations (in steps 2, 3, 5, and
6). Since all of these operations can be performed in O(l3) steps (see, e.g.,
[23], chapter 28), the overall running time of one call to the function Back-
track(M,k, d) is also in the order of O(l3) computational steps.

Total resources: In order to determine the overall memory requirements,
observe that the maximum depth of the search tree is l. This means that in
the worst case, l + 1 recursive calls to the function Backtrack(M,k, d) are
active at once. Even if for each call a separate copy of all parameters is used,
the number of memory bits required is in O(l3).

On the other hand, the running time of the algorithm is determined directly
by the total number of calls to function Backtrack(M,k, d), i.e., the size of
the search tree. In the worst case (all nonlinear equations have degree l), this
search tree is a complete binary tree of depth d = l − 1 with 2l − 1 nodes. On
the other hand, if contradictions occur early during tree traversal, the tree will
be much smaller, albeit in most cases still exponential in l. Thus, the overall
running time of the dynamic LCT algorithm is in O(l3 · 2cl), with 0 < c < 1
being a constant that determines the efficiency of the attack.

The size of the search tree is reduced whenever a branch from the complete
binary search tree is cut away, either because a contradiction has occured or
because the internal system of equations has full rank. Note that contradictions
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can only occur if a new equation is linearly dependent on the previous ones, while
the rank of the system of equations is only increased with linearly independent
equations. In practice, however, it is hard to predict whether new equations at
a given depth will be linearly dependent on the previous ones.

The reason for this is that all changes to the generator, the feedback recur-
rences, or the variable ordering π change the form of the linear equations and
thus the dependency structure. As a consequence, it seems to be impossible
to find a mathematical description of the tree size or the constant c for the
dynamic LCT attack in general. The best that can be done is to give estimates
for certain classes of generators. Such estimates will be presented in the remain-
ing chapters of part III. In particular, a case study against the self-shrinking
generator will be discussed in chapter 8.

Handling of key candidates: So far, only the effort for traversing the search
tree was considered, ignoring the handling of the key candidates produced in
step 8. Note, however, that such candidates can be processed immediately by
calling a suitable test procedure that runs the generator with this key, checking
the correctness of the output. Thus, no additional memory is required.

Nonetheless, the number of key candidates can be exponentially large in l,
depending on the number and the degree of the nonlinear equations available.
Note that if n output bits (and associated equations) are available, the algorithm
is expected to produce 1 correct and (2l − 1)/2n ≈ 2l−n false key candidates.
On the other hand, each leaf of the search tree can produce at most one key
candidate, implying that the number of key candidates is in O(2cl). Thus, the
additional running time for testing the key candidates is well contained in the
asymptotic running time for determining those candidates, and will be neglected
from now on.

The toy example, completed: In figure 7.4, the structure of the complete
search tree for the toy example is given. The following observations can be
made:

• The search tree contains an overall of 83 nodes (or calls to the recursive
function). This is better than the brute force effort of testing 210 = 1024
inner states, but worse than the 26 = 64 tests required for a simple LCT
algorithm. This is surprising; after all, the dynamic approach is meant to
improve the running time of the basic LCT. Thus, it is necessary to find
out in which cases the dynamic version is superior to the basic one, and
vice versa.

• There exist 16 leaves in the search tree that contain a system of equations
with full rank, meaning that an overall of 16 key candidates exist. This is
very close to what is expected - on the average, there should be 1 correct
and 1023/64 ≈ 15.98 incorrect candidates.
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Figure 7.4: The structure of a dynamic LCT search tree

7.5 Further improvements

The role of the variable ordering: An important role for the efficiency
of the attack plays the order π in which the assignments to the variables are
guessed. Informally, it is important for the attacker to choose π such that he
obtains as many linear equations as early as possible. In this way, he increases
his chances of obtaining an early contradiction or key candidate, cutting the
tree short at low depth. As an example, if the attack on the toy example is
conducted using the variable ordering π = (a0, b0, a1, b1, c0, c3, c1, c4, c2, c5), the
size of the search tree is reduced to 57 nodes. Considering that a search tree
with 16 grey leaves (i.e., key candidates) consists of at least 31 nodes, this value
is much closer to the optimum than the 83 leaves of the search tree in figure 7.4.

Adaptive guessing: One step towards a smaller search tree is to abandon the
statical guessing order π in favour of an adaptive one. At each level, the attacker
chooses the next variable to be guessed in such a way that he obtains as many lin-
ear equations as possible. In the above example, if (a0, b0) ∈ {(0, 0), (1, 1)}, the
attacker should use the variable ordering π1 = (a0, b0, a1, b1, c0, c3, c1, c4, c2, c5),
otherwise, he should use π2 = (a0, b0, a1, b1, c1, c4, c0, c3, c2, c5). This way, the
tree size reduces to a mere 49 nodes. More formally, the next variable to be
guessed should depend on the values of those previously guessed. This can be
modelled by a variable ordering graph (with each node being labeled by a vari-
able name and each path by an assignment to this variable), as shown, e.g., in
chapter 6 of [119] for use with BDDs.

Equation guessing: Another option for decreasing the tree size is to guess
linear equations instead of single bits. Remember that for the dynamic LCT



54 CHAPTER 7. THE DYNAMIC LINEAR CONSISTENCY TEST

as presented in section 7.3, not only the output equations, but also the guessed
bits form equations that are added to the system. Sometimes, however, not
the individual bits are of interest, but their combination. As an illustration,
consider the toy example for the Geffe generator again. If the values of a0 ⊕ b0
and a1 ⊕ b1 are known, all equations for (z0, . . . , z5) become linear and can be
added to the system of equations. Thus, after just two guesses, the system
of equations contains up to 8 equations. If, in addition, the remaining bits are
guessed in an adaptive way, the size of the search tree can be reduced to as little
as 35 nodes, which is almost optimal. In chapter 9, a special case of equation
guessing denoted as clock control guessing will be discussed in more detail.



Chapter 8

Dynamic LCT and the
Self-Shrinking Generator:
A Case Study

8.1 The self-shrinking generator

8.1.1 Description

The self-shrinking generator is a modified version of the shrinking generator
[22] and was first presented by Meier and Staffelbach in [85]. It requires only
one LFSR A of length lA = l and a clock-control unit. The LFSR generates
an m-sequence (a0, a1, . . .) in the usual way. The output function requires two
consecutive bits (a2i, a2i+1) as input and outputs a2i+1 iff a2i = 1. The basic
concept of the generator is displayed in figure 8.1.

Period and Linear Complexity: The period ρ of an output sequence gen-
erated by a self-shrinking generator was proven to be 2bl/2c ≤ ρ ≤ 2l−1 in [85].

a2i

a2i+1

clock i

LFSR A

Selection
Rule z j

Figure 8.1: The Self-Shrinking Generator
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Experiments indicate that the period always takes the maximum possible value
for l > 3.

It was also shown that the linear complexity LC(z) is greater than ρ/2 for
all sequences generated by a self-shrinking generator. On the other hand, LC(z)
was proven in [13] to be at most 2l−1− (l−2). If ρ = 2l−1, it follows that LC(z)
∈ Θ(2l−1). Thus, for realistic generator sizes of l > 100, the Berlekamp-Massey
attack (section 4.3) is computationally infeasible.

8.1.2 Previous work on cryptanalysis

Attacks using short output sequences: Even if the feedback logic of the
LFSR is not known, there is a simple way of reducing the key space [85]. Con-
sider the first two bits (a0, a1) of the LFSR (unknown) and the first bit z0 of the
output stream (known). Then there are only three out of four possible combina-
tions (a0, a1) that are consistent with the output stream, since (a0, a1) = (1, z̄0)
is an immediate contradiction. The same rule can be applied for the next bit
pair (a2, a3), and so on. Consequently, only

3l/2 = 2(log2(3)/2)·l = 20.79l

possible initial values for the LFSR A are consistent with the initial bits of the
output stream.

The running time required to search through the reduced key space can be
further decreased on the average by considering the likelihood of the keys. Note
that the following holds:

Pr[(a0, a1) = (0, 0) | z0] = 1/4
Pr[(a0, a1) = (0, 1) | z0] = 1/4
Pr[(a0, a1) = (1, z0) | z0] = 1/2.

Thus, the entropy of the bit pair is

H = −(1/4) log(1/4)− (1/4) log(1/4)− (1/2) log(1/2) = 3/2.

The total entropy of an initial state consisting of l/2 such pairs is 0.75l. Thus,
the effort for searching the key space is roughly 20.75l if the cryptanalyst starts
with the most probable keys.

The most efficient attack is the BDD attack by Krause [71]. Both running
time and memory requirements of this attack were asymptotically estimated
to be in O(20.656l), using roughly 2.41l bit of output. Note, however, that as
opposed to the above techniques, BDD attacks require significant memory. Also
note that the asymptotical estimate hides significant polynomial factors from
view. An implementation was given by Schleer [107], reconstructing the inner
state for key sizes up to l = 24 bit and indicating that only for large values l, a
BDD attack will be more efficient than the techniques presented in [85].
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value n: 0.25l 0.306l 0.50l
Time: 20.75l 20.694l 20.5l

Bits :
l = 120 28.19 210.17 265.91

l = 160 28.81 211.37 286.32

l = 200 29.30 213.07 2106.64

l = 240 29.69 214.03 2126.91

l = 280 210.02 214.94 2147.13

l = 320 210.31 215.81 2167.32

Table 8.1: Number N of output bits required for Mihaljević’s attack

Attack using long output sequences: In [90], Mihaljević presented a faster
attack that needs, however, a longer part of the output sequence. Let the length
of this known part be denoted by N . Then the attacker assumes that an n-bit
section of the output stream has been generated by the current inner state of
the LFSR. Consequently, n out of the l/2 even bits of A must be equal to 1.
The attacker guesses these bits and checks whether or not this guess can be
correct, iterating over all n-bit sections of the output stream. It is shown that
cryptanalysis is successful with high probability after 2l−n steps.

Since this procedure only makes sense for l/4 ≤ n ≤ l/2, the running time
can vary from 20.5l in the best case to 20.75l under less favourable circumstances.
The efficiency of the attack depends mainly on the number of output bits that
are available, since the value n must be chosen such that the following inequality
holds:

N > n · 2l/2 ·
(

l/2
n

)−1

In order to get a feeling for the number of bits required for this attack, table
8.1 gives some examples of required bitstream lengths for different register sizes
l. Consider the following cases:

• In order to beat the key reconstruction algorithm by Meier and Staffelbach,
n = 0.25l is necessary, yielding a running time of 20.75l steps.

• Improving the running time to 20.694l (which is the performance of the
algorithm to be presented in section 8.2) requires n = 0.306l.

• In order to achieve the best possible running time of 20.5l steps, it must
hold that n = 0.5l. Note that for realistic register lengths, the sheer
amount of required data (namely, N > l

2 · 2l/2) should make such an
attack a mere theoretical possibility.
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8.2 Applying the dynamic LCT attack

We will now apply the adaptive guessing technique introduced in section 7.5
against the self-shrinking generator in way of a case study, using the results
previously published in [132]. In this way, we illustrate some of the difficulties
encountered when trying to find an estimate for the running time of a dynamic
LCT attack. Nonetheless, it will be shown that this attack is more powerful
against the self-shrinking generator than the techniques by Meier/Staffelbach
and Mihaljević described in section 8.1.2, almost reaching the asymptotical ef-
ficiency of Krause’s attack without its memory requirements.

Variable ordering: Remember that the LFSR A of the self-shrinking genera-
tor produces the internal bitstream (a0, a1, . . .), using all even bits as clock con-
trol bits and all odd bits as output bits. Thus, while the attacker guesses the se-
quence of control bits (a0, a2, a4, . . .), he learns which inner sequence bits turned
into output bits. As an example, if the first output bits are (1, 1, 0) and if the at-
tacker assumes that the first clock control bits have been a0 = 1, a2 = 0, a4 = 1,
and a6 = 1, it follows from the output stream that a1 = 1, a5 = 1 and a7 = 0.
In this way, using the variable ordering (a0, a2, . . .) for his guesses, the attacker
conducts a dynamic LCT attack.

A useful proposition: When analysing the resources required by the attack,
the following property of the key (i.e., the seed of the LFSR) can be useful1:

Proposition 1 For each key k = (a0, . . . , al−1) with a0 = 0, there exists an
equivalent key k′ = (a′0, . . . , a

′
l−1) with a

′
0 = 1.

Proof: Consider the sequence (ai)i≥0 generated by the inner state k. Suppose
the first ’1’ on an even position appears in position 2s. Then clock the register
by 2s steps, deriving the new inner state k′ = (a2s, . . . , a2s+l−1). Obviously,
both inner states yield the same output sequence, since in transforming k to k′,
no output is generated. 2

It is thus safe to assume that a0 = 1 and a1 = z0. In this way, we will
reconstruct a key that is not necessarily equal to the original key, but it is
equivalent in a sense that it will create the same output sequence.

From now on, the attacker has to guess the even bits of the sequence (ai)i≥0.
In this way, he obtains two different types of equations as follows:

• Every guess can be represented by a linear equation a2d = bd. These
equations will be referred to as being of type 1.

• If a2d = 1, he obtains a second equation, namely a2d+1 = zj , where

j =
∑d

c=0 a2c. These equations will be denoted as being of type 2.

The first nodes of the corresponding search tree are shown in figure 8.2.

1The same property also holds for the shrinking generator. In this context, it was discussed
in [114].
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Figure 8.2: The Tree of Guesses

Structure of the tree: In the next section, the size of this search tree shall
be evaluated. Note that as long as d ≤ bl/2c − 1, the development of the tree
is straightforward. There are exactly two new equations whenever a ’1’ branch
is followed, and exactly one new equation when following a ’0’ branch. All of
these equations are linearly independent, since no variable ai appears more than
once. Thus, the search tree is a complete binary tree of height bl/2c − 1.

Beyond that point, however, the tree becomes irregular, since the indices
of the new equations (both of type 1 and 2) become larger than l − 1. Thus,
the feedback recurrence must be used to convert the simple equations into a
representation using only a0, . . . , al−1. Depending on the equations that are
already known, there is an increasing probability that the new equations are
linearly dependent on the earlier ones. If this leads to a contradiction, the
tree is cut short at this point, reducing the tree size. The same holds if the
system of equations obtains full rank, which can happen at some point between
d = dl/2e − 1 and d = l − 1.

8.3 Upper bounding the running time

In this section, an asymptotical upper bound on the running time of the algo-
rithm is established. First, an upper bound Cl for the number of consistent
leaves in the tree of guesses is given (sections 8.3.1 to 8.3.3).2 Then, in sec-
tion 8.3.4, an upper bound for the number Nl of nodes in the tree is derived,
followed by the conclusion that the total running time of the algorithm can be
upper bounded by O(l4 · 20.694l).

2A consistent leaf is a leaf that contains a linear equation system of full rank, as opposed
to an inconsistent leaf which contains a contradictory equation system.
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8.3.1 Well-formed vs. malformed trees

Let T` denote a tree of guesses such that ` linearly independent equations are
still missing in the root to allow the solving of the system of equations. Note
that for the search tree given in section 8.2, it holds that ` = l − 2.

In order to formally prove the maximum number C` of consistent leaves in
T`, each node is labelled by the number of linearly independent equations still
needed in order to solve the system of equations. The root is thus labelled by
`. For technical reasons, we allow a consistent leaf of the tree to take both the
labels 0 and −1, both meaning that the system is completely specified.

Assumption 1 For the following average case analysis, assume that an equa-
tion that is linearly dependent on its predecessors will lead to a contradiction
with probability 1/2.

This assumption is reasonable, since the bits ai are generated by an m-LFSR,
meaning that a variable takes values 0 and 1 with (almost) equal probability.

Now consider an arbitrary node V of depth d−1, d ≥ 1, and its two children,
V0 and V1 (reached by guessing a2d = 0 or a2d = 1, resp.). Let V be labelled by
j. The labelling of the child nodes depends on whether a2d or a2d+1 are linearly
dependent on the previous equations:

A) Both are independent. In this case, no contradiction occurs. The left child
is labelled j − 2, and the right child is labelled j − 1.

j

Prob = 1

j-2 j-1

B) a2d is independent, a2d+1 is not. Both children are labelled j−1. However,
a contradiction occurs in V1 with probability 1/2.

j j

Prob = 1/2 Prob = 1/2

j-1 j-1 j-1

C) a2d is dependent, a2d+1 is not. The left child is labelled j − 1, while the
right child is labelled j. However, a contradiction occurs either in V1 or
in V0, with equal probability.

j j

j

Prob = 1/2 Prob = 1/2

j-1
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D) Both are dependent. In this case, both child nodes have the same label
as the parent node. Due to the linear dependency of a2d there occurs a
contradiction in either V1 or V0, with equal probability. Also note that
there is an additional probability of 1/2 that a2d+1 leads to a contradiction
in V1.

j j

j

j

j

Prob = 1/4 Prob = 1/2 Prob = 1/4

Definition 1 A well-formed tree T ∗` is a binary tree where only branchings
of type A occur, i.e., for every node that is not a leaf, the following rule holds:
If the label of the node is j, then the label of its left child is j − 2 and the label
of its right child is j − 1.
A malformed tree is an arbitrary tree of guesses that contains at least one
branching of type B, C or D.

Essentially, the notion of a well-formed tree describes the tree of guesses
under the assumption that all linear equations (of both type 1 and 2) are linearly
independent. Note that such a tree is highly unlikely for large `. Nonetheless,
the well-formed tree plays an important role in establishing the overall number
of consistent leaves for the tree of guesses.

Consider the following experiment in order to generate a tree of guesses. We
start at the root (labelled `) and generate the lower levels recursively with the
help of an adversary G as follows:

• If l ≥ 1, let G choose one of the roles A-D. The labels of the child nodes
are determined probabilistically, as described above. For each child node,
this algorithm is repeated recursively.

• If l ≤ 0, mark the current node as leaf and backtrack.

Note that the tree generated by this experiment has the same structure as
a tree generated while running the dynamic LCT attack on the self-shrinking
generator. Now, it can be proven that whichever roles the adversary G chooses
during the course of the experiment, on the average, a malformed tree has at
most the same number of consistent leaves as a well-formed tree.

Theorem 1 Let C∗` denote the number of consistent leaves of a well-formed
tree T ∗` . Let C` denote the maximum number of consistent leaves in a tree T`
that was generated according to the above experiment. Then for all behaviours
of G, it holds that C` ≤ C∗` on the average.
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Proof: The proof is by induction. Obviously, the inequality holds for C−1

and C0, since trees T−1 and T0 consist only of a root without a child. Thus,
C−1 = C∗−1 = 1 and C0 = C∗0 = 1.
Now consider C`, ` ≥ 1. First note that since the theorem holds for C`−1 and
C`−2, it follows that

C`−1 + C`−2 ≤ C∗`−1 + C∗`−2 = C∗` . (8.1)

Also note that even in the worst possible branching case, it follows that

C` ≤ 2 · C`−1. (8.2)

for all `. Using these two facts, an upper bound for C` can be proven by
distinguishing the following cases (identical to the behaviours of G in the above
experiment):

A) Let the tree TA` be composed of a subtree with at most C`−2 consistent
leaves and a subtree with at most C`−1 such leaves. It follows for the
maximum number CA

` of consistent leaves in such a tree that

CA
` ≤ C`−2 + C`−1 ≤ C∗` .

B) The tree TB` is composed of either one or two subtrees, having at most
C`−1 consistent leaves each. Consequently, CB

` ≤ 1/2 ·C`−1+C`−1. Using
(8.2), it follows that

CB
` ≤ C`−2 + C`−1 ≤ C∗` .

C) The tree TC` is composed of only one subtree with at most C`−1 or C`
consistent leaves, resp. (with equal probability). It holds that CC

` ≤
1/2 · (C`−1 + C`), and using (8.2), it follows that

CC
` ≤

1

2
(2C`−2 + 2C`−1) = C`−2 + C`−1 ≤ C∗` .

D) The tree TD` has one of the forms given in case D. Then, for the average
number CD

` of consistent leaves in this tree, it holds that CD
` ≤ 3

4 · C`.
Using (8.2) repeatedly, it follows that

CD
` ≤

3

2
· C`−1 = C`−1 +

1

2
C`−1 ≤ C`−1 + C`−2 ≤ C∗` .

Since C` = max(CA
` , C

B
` , C

C
` , C

D
` ), if follows that C` ≤ C∗` . 2

8.3.2 Size of a well-formed tree

We have shown that on the average, the number C` of consistent leaves in an
arbitrary tree of guesses is not bigger than the number C∗` of consistent leaves
in a well-formed tree. In the next section, an estimate for C∗` and thus an upper
bound for C` will be proven.
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Theorem 2 Let C∗` denote the size of a well-formed tree T ∗` . Then we have

a` ≤ C∗` ≤ 2
aa

` for all L ≥ 1, where a = 1+
√

5
2 ≈ 20.6942419. 3

Proof: Note that for all ` ≥ −1, C∗` satisfies the recursion C∗`+2 = C∗`+1 +C∗`
with C∗−1 = C∗0 = 1.

Let a be the unique positive solution of x2 = x+1, i.e., a = 1+
√

5
2 . In this case,

the function F (`) = a` also satisfies the recursion F (` + 2) = F (` + 1) + F (`)
for all ` ≥ 0. Since C∗0 = F (0) and C∗1 = 2

aF (1), it follows that a` ≤ C∗` ≤ 2
aa

`

for all ` ≥ 0. 2

Note that 2
a ≈ 1.236068. Thus, the upper bound of the average search tree

is C` ≤ 2
a · 20.694` ≈ 20.694`+0.306.

8.3.3 Worst case considerations

The above result can be applied directly to the tree of guesses in section 8.2.
Remembering that such a search tree actually has a root labelled ` = l− 2, the
average number of consistent leaves is upper bounded by Cl ≤ 20.694l−0.918.

This upper bound seems to hold even for the worst case, provided that l is
large enough. Remember that assumption 1 stated that in case of a linearly de-
pendent equation, a contradiction occurs with probability 1/2. Now remember
from section 8.2 that linearly dependent equations do not occur before depth
b l2c is reached. This, in turn, means that for large l there exists a large number

of nodes labelled j for each j < l − b l2c. Thus, the law of large numbers can
be applied, stating that the actual number of contradictions is very close to
the expected number of contradictions. Thus, the number of consistent leaves
should be close to the above bound not only for the average case, but for almost
any tree of guesses.

In order to give some more weight to this rather informal argument, we will
provide some empirical evidence for this conjecture in section 8.4.

8.3.4 Total running time

It remains to establish an upper bound for the maximum number of nodes in
the tree. Since the tree will be malformed, it contains nodes that have only one
child. It is thus impossible to upper bound the number of nodes by 2 ·Cl−1, as
could be done for a binary tree with inner nodes of fixed outdegree 2. However,
it can be proven that the maximum depth of the search tree is l − 1.

Proposition 2 If the linear recurrent sequence (ai)i≥0 is an m-sequence, then
the tree has maximum height of l − 1. 4

3The proof of this theorem is due to M. Krause.
4Note that this proposition only holds for m-sequences. The use of shorter sequences,

however, would be a breach of elementary design principles, since it would facilitate a number
of other attacks. It does not seem to increase resistance against our attack either, it just
makes the proof harder.



64 CHAPTER 8. SELF-SHRINKING GENERATOR

Proof: Any node of depth d contains exactly d+1 equations of type 1 (and a
varying number of equations of type 2). Thus, at depth l− 1, there are exactly
l such equations, namely for a0, a2, . . . , a2l−2.
By a theorem on m-sequences (see, e.g., [56], p. 76), there exists an s such that
the following holds:

(as, as+1, . . . , as+l−1) = (a0, a2, . . . , a2l−2)

Since as, . . . , as+l−1 are linearly independent, the same holds for a0, a2, . . . , a2l−2.
Consequently, there are l linearly independent equations of type 1 in any node
of depth l−1, allowing us to solve the system and derive a key candidate. Thus,
no node of the tree will have depth ≥ l. 2

This fact can be used to upper bound the number of nodes. Consider the
largest binary tree (w.r.t. the number of nodes) with height l − 1 and Cl con-
sistent leaves. This tree is a complete binary tree from depth 0 to p := blogClc.
From depth p+ 1 to depth l − 1, the tree has constant width of Cl.

Let Nl denote the number of nodes in a search tree. It follows that Nl is at
most the size of this worst possible tree.

Nl ≤ (2p+1 − 1) + (l − p− 1) · Cl

Note that both 2p+1 and Cl are in O(Cl). Ignoring all constant summands and
factors to Cl, if follows that:

Nl ∈ O((l − p) · Cl)
= O(0.306 l · 20.694 l−0.918)

= O(0.162 l · 20.694 l)

Remembering that in each node, one or two linear equations have to be
inserted into a system of equations, and ignoring constant factors again, we
derive a total asymptotic running time in O(l4 · 20.694 l), requiring roughly l
output bits instead of the large number of bits necessary for Mihaljević’s attack
as presented in section 8.1.2.

8.4 Experimental results

Results on the number of consistent leaves: In section 8.3, it was proven
that the number of consistent leaves in the search tree is upper bounded by
20.694l−0.918 in the average case. This result leaves a number of open questions.
Since only an upper bound was derived: How close is this value to the average
number of consistent leaves that do occur in an actual search?5 And what about
the conjecture in section 8.3.3? Is Cl also an upper bound for the worst case,
for large l?

5We must take care not to confuse the average case of the analysis with the average number
of consistent leaves in the search tree; they are quite different mathematical objects.
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Number of leaves Number of nodes
l Cavg Cmax Cbound Navg Nmax Nbound

3 21.00 21.00 21.16 21.58 21.58 21.04

4 21.55 21.58 21.86 22.57 22.81 22.15

5 22.29 22.58 22.55 23.28 23.46 23.17

6 22.85 23.17 23.25 24.21 24.64 24.12

7 23.53 23.81 23.94 24.92 25.43 25.04

8 24.23 24.64 24.63 25.61 25.93 25.93

9 24.88 25.29 25.33 26.35 26.79 26.79

10 25.53 25.88 26.02 27.05 27.55 27.64

11 26.22 26.57 26.72 27.75 28.24 28.47

12 26.87 27.26 27.41 28.46 28.89 29.29

13 27.56 27.92 28.10 29.16 29.73 210.10

14 28.25 28.56 28.80 29.85 210.20 210.90

15 28.92 29.23 29.49 210.56 211.26 211.69

16 29.61 29.90 210.19 211.25 211.64 212.48

Table 8.2: Empirical Results

In order to answer those questions, the key reconstruction algorithm from
section 8.2 has been implemented and tested against all keys and all m-LFSRs
of lengths l = 3, . . . , 16. The main results of this simulation are given in the left
part of table 8.2. Here, Cavg and Cmax denote the average and maximum num-
ber of consistent leaves encountered in the experiments. Cbound = 20.694l−0.918

denotes the upper bound as calculated in section 8.3. For ease of comparison,
all values are given in logarithmical notation.

First observe that values Cavg and Cmax are very close; they differ by a
factor φ with 1 < φ < 1.33. Of course, this may or may not hold for larger
values of l, but for small l, the maximum number of consistent leaves does not
stray very far from the average.

Also observe that for l > 8, Cbound seems to be a proper upper bound not
only for the average case, but also for the maximum number of consistent leaves
in the search tree. Note especially that for l > 8, the gap between Cmax and
Cbound seems to be widening with increasing l. Nonetheless, additional empirical
or mathematical evidence for larger l might be necessary before our conjecture
from section 8.3.3 can be considered confirmed.

Results on the number of nodes: In the right half of the table, the results
on the number of nodes are given. Again, Navg andNmax denote the average and
maximum values encountered in the experiments, while Nbound = 0.162 l ·20.694 l

denotes the mathematical bound as given in section 8.3.4.

It seems that for l > 7, Nbound is an upper bound for the number of nodes in
the worst possible case. As with the results on the number of consistent leaves,
the gap between Nmax and Nbound seems to be widening with increasing l, but
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again, more data for larger l would be helpful. Also note that Navg and Nbound

are very close to each other.
An interesting side observation is that Navg ≈ 2 · Cbound, i.e., the average

number of nodes appears to be almost exactly twice the mathematical upper
bound for the number of consistent leaves as derived in section 8.3.3. This is
not apparent from the mathematical analysis in section 8.3 and may thus be an
interesting starting point for future research.

8.5 Conclusions

General observations: Using the example of the self-shrinking generator,
it was demonstrated that the dynamic LCT attack can be an efficient way of
attacking a PRG, especially if only a small number of output bits is available.
Nonetheless, for realistic key sizes between 120 and 200 bits, the attack is cur-
rently not feasible in practice.

When analysing the running time of the algorithm, it became apparent that
estimating the size of the search tree requires some thought. For many other
generators, a similar effort is necessary in order to determine the computational
resources required by the attack.

Design recommendations: For a modern key size of 120 bits, the search tree
has a size of more than 283 nodes, making the dynamic LCT attack infeasible
in practice. Note, however, that the attack is easily parallelised, allowing an
adversary to use as many parallel processors at once as he can afford. Since
each processor can operate on its own segment of the tree (without any need
of communication), k processors can reduce the running time by a factor of k.
Thus, a generator using a shorter register is in real danger of being compromised.
It can be concluded that 120 bit should be the minimum length of a self-
shrinking generator.

Note that our attack relies on the feedback logic of the register to be known.
If this is not the case, the attack has to be repeated for all m-LFSRs of length
l, yielding an additional working factor of φ(2l − 1)/l, where φ denotes the
Euler function.6 Security of the self-shrinking generator can thus be increased
significantly by following the proposal given in [22, 85]: Use a programmable
feedback logic and make the actual feedback recurrence a part of the key.

Finally, observe that the use of sparse feedback recurrence makes our attack
slightly more effective. If the more significant bits depend on only a few of the
less significant bits, the probability of linearly dependent equations increases,
yielding a tree of guesses that is more slender than the average case tree consid-
ered above. However, as stated in section 8.4, the sizes of worst case and best
case trees seem to differ by less than a factor 2. Nonetheless, sparse feedback
recurrences should be avoided in designing most PRGs, the self-shrinking gen-
erator being no exception.

6Again, refer to [86] for definitions.



Chapter 9

Dynamic LCT and
Clock-Controlled
Generators

9.1 Introduction

As described in section 3.3, clock control is an important technique for trans-
forming the output of one or more LFSRs into a nonlinear bitstream. Many
PRGs are based on this principle. In this chapter, it will be shown how the
dynamic LCT can be applied against a class of such clock-controlled generators,
and how a general upper bound for the resulting search trees can be obtained.
Originally, these topics have been discussed in [128].

The class of generators: Remember that St denotes the inner state of a
generator at time t, where S0 is the initial state or key. Each inner state St de-
termines uniquely a clock control behaviour ξt (sometimes referred to as “clock-
ing”) that leads to the inner state St+1.

S0
ξ0−→ S1

ξ1−→ S2
ξ2−→ . . .

Also remember that from the inner states S0, S1, . . ., the generator derives the
output stream z = (z0, z1, . . .). In the following, clock control generators with
the following properties are considered:

1. The output bit depends on the inner state of the generator in some linear
way.
For each clock cycle t and each assignment to the output bit zt, a linear
equation L can be given such that the inner state St generates output bit
zt iff St is a solution to L.

67
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2. The behaviour of the clock control depends on the inner state of the gen-
erator in some linear way.
For each clock cycle t and each assignment to the clock control behaviour
ξt, a set M ′ of linear equations can be given such that the inner state St
generates the clock control value ξt iff St is a solution to M ′.

3. The number of possible behaviours of the internal clock is small.

Clock control guessing: Given a generator that has properties 1-3, the at-
tacker can modify the dynamic LCT attack introduced in chapter 7 by guessing
the clock control behaviour ξt for t = 0, 1, . . .. Since condition 2 holds, he obtains
a set of linear equations for each such guess, making the attack an application
of the equation guessing technique introduced in section 7.5. From condition 1
and his knowledge of the LFSR clockings so far, he also obtains one equation
per guess that depends on the output stream z.

In simple cases like the {1, 2}-clocked generator, clock control guessing is
identical to simple bit guessing. Guessing the behaviour of the clock control
is equivalent to guessing the bits c0, c1, . . .. Thus, for this particular generator,
clock control guessing turns out to be the dynamical LCT attack as described in
section 7.3. There are, however, more contrieved clock control designs like that
of A5/1, which will be introduced in section 9.3. In the next section, a simple
technique will be presented for estimating the running time of clock control
guessing against all generators having properties 1-3, no matter how simple or
complicated their clock control rule is.

9.2 On the efficiency of clock control guessing

Estimating the running time: As mentioned in section 7.4, a precise es-
timate of the running time (i.e., the number of nodes in the search tree) is
not possible without paying close attention to the details of the cipher consid-
ered. The length of the registers, the sparseness of the feedback recurrences,
the positions of the output and clock control bits, the choice of the output and
clock control function, and even the values of the output bits all determine the
efficiency of the attack.

In case of the clock-controlled generators meeting conditions 1-3, however,
a general upper bound for the size of the search tree can be proven. In order to
do this, the generator is assumed to meet the following additional condition:

4. The number of seeds S0 that are consistent with the first d output bits
(d ≤ l) is approximately 2l−d.

Note that this condition is met by all properly designed pseudorandom gener-
ators, since otherwise, successful statistical tests could be developed. Now the
maximum width of the search tree can be estimated, using an elegant tech-
nique proposed by Krause in [71]. To this end, consider the following simple
observations.
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Observation 1: Consider a node v in the search tree at depth d. Such a
node is reached by a sequence b0, b1, . . . , bd−1 of guesses for the clock control
behaviour. It contains a system M of linear equations derived on the path from
the root to the node by using properties 1 and 2 of the generator. The set of
solutions to M has the following properties:

a) All solutions to M produce the clock control sequence b0, b1, . . . , bd−1.

b) All solutions to M produce the output sequence z0, z1, . . . , zd−1.

c) If M is consistent, there is at least one solution to M .

We say that the node v represents all inner states that are solutions to M ,
and that v is consistent if M is consistent. As a consequence of property a,
no two nodes at depth d represent the same inner state, since different nodes
imply different behaviours of the clock control. On the other hand, no node v
represents an inner state that is inconsistent with the output bits z0, . . . , zd−1.
From property 4 of the generator, it follows that there are approximately 2l−d

solutions represented by all nodes at depth d. Since by property c, there are no
empty consistent nodes, there can be at most 2l−d consistent nodes at depth d.
For low values of d, however, the number of consistent nodes is going to be a
lot smaller since each node represents a huge number of inner states.

Observation 2: On the other hand, the number of nodes in the tree at depth
d can never be larger than kd, where k is the number of possible behaviours of
the clock control. For small values of d, this estimate will usually be exact, while
for larger values of d, the actual tree contains a lot less nodes than indicated by
this number.

Width of the search tree: Observe that the function 2l−d is constantly
decreasing in d, while kd is constantly increasing. Since the number of consistent
nodes in the tree is upper bounded by both of these functions, the maximum
number of nodes at a given depth d is upper bounded by min{2l−d, kd}. Writing
kd = 2log(k)·d for convenience, the maximum number of nodes must be smaller
than 2w with w = l − d, yielding

2w = 2log(k)·(l−w)

⇔ w = log(k) · (l − w)

⇔ w =
log(k)

log(k) + 1
l

Thus, the number of consistent nodes in the widest part of the search tree cannot

exceed 2c·l with c = log(k)
log(k)+1 . Note that this is not an asymptotical result; it

is perfectly valid to use concrete values for k and l and to calculate the upper
bound.
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Figure 9.1: The A5/1 Generator

Total running time: After obtaining an upper bound on the width of the
search tree, the total running time is easily determined. Observing that

• there are at most two layers with width 2w, that

• all layers above those two have at most 2w consistent nodes amongst them,
and that

• all layers below those two have at most 2w consistent nodes amongst them,

it follows that the tree has at most 4 · 2w consistent nodes. Observing further
that there must be less than k non-consistent nodes for each consistent node,
the number of recursive function calls is limited by 4 · (k + 1) · 2w ∈ O(2w).

Thus, the overall running time must be in O(l3 · 2c·l) with c = log(k)
log(k)+1 .

9.3 Application: attacking A5/1

Description of the cipher: A5/1 is the encryption algorithm used by the
GSM standard for mobile phones; it was described in [15]. The core building
block is a PRG, consisting of three LFSRs with a total length of 64 bit. First,
the output is generated as the sum (mod 2) of the least significant bits of the
three registers. Then the registers are clocked in a stop-and-go fashion according
to the following rule:

• Each register delivers one bit to the clock control. The position of the
clock control tap is fixed for each register.

• A register is clocked iff its clock control bit agrees with the majority of all
clock control bits.

An illustration of the generator is given in figure 9.1, where dotted lines denote
the clock control and straight lines denote the LFSR outputs.
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Clock control guessing: Against the A5/1 generator, the clock control guess-
ing attack was discussed earlier by Zenner [127], Golić [48], and Pornin and Stern
[97]. First observe that the A5/1 generator produces 1 output bit per master
clock cycle, and that there are 4 different behaviours of the clock control. Let
u1, u2 and u3 denote the contents of the clock control bits for a given clock
cycle. Table 9.1 gives the dependency between u1, u2, u3 and the behaviour ξ of
the clock control. Note that equivalent linear equations are easily constructed.
Thus, it follows that the A5/1 algorithm meets all prerequisites for a success-

ξ Equation
(011) u1 6= u2 = u3

(101) u1 6= u2 6= u3

(110) u1 = u2 6= u3

(111) u1 = u2 = u3

Table 9.1: Clock control and linear equations

ful clock control guessing attack. The attacker guesses the behaviour of the
clock control for each output bit, derives the linear equations and checks for
consistency.

Upper bounding the running time: Applying our estimation technique to
the A5/1, two facts can be observed:

1. The seed is generated in such a way that only 5
8 · 264 states are in fact

possible. The impossible states can be excluded by a number of simple
linear equations (for details, see [46]). Thus, the efficient key length of the
inner state is only 64 + log( 5

8 ) ≈ 63.32 bit.

2. Furthermore, the first output bit is not yet dependent on the clock control.
Thus, the efficient key length of the inner state prior to any clock control
guessing is further reduced by 1 bit, yielding l ≈ 62.32.

For each master clock cycle, 4 possible behaviours of the clock control are possi-
ble. Thus, k = 4 and log(k) = 2. Using the estimate from section 9.2, it follows
that the search tree has a maximum width of 2(2/3)·62.32 ≈ 241.547 nodes.

This result coincides with the maximum number of leaves as given by Golić
in [48], derived from a more involved analysis. Also note that in the same work,
the average number of leaves was estimated to be 240.1, as was to be expected:
By paying close attention to important details of the generator such as the
position of the feedback taps or the lengths of the registers, an estimate for
the tree size can be derived that in most cases will be lower than the general
upper bound. Nonetheless, this upper bound gives a first indication of a PRG’s
strength by ruling out some weak generators without further effort.
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Test run on a small version: In order to demonstrate the difference between
the proven upper bound and the actual running time, a 40-bit version of the
A5/1 was implemented, featuring the details given in table 9.2.

LFSR length feedback recurrence clock control tap
A 11 ai = ai−9 + ai−11 a6

B 14 bi = bi−9 + bi−11 + bi−13 + bi−14 b7
C 15 ci = ci−3 + ci−11 + ci−13 + ci−15 c8

Table 9.2: 40-bit version of the A5/1 generator

Again, observe that the first output bit is not yet dependent on the clock
control, yielding 239 candidates for the seed or an efficient key length of l = 39
bit.1 Thus, the bounding functions are 4d and 239−d, yielding a maximum search
tree width of 226.

An total of 120 experiments was conducted, and the results are shown in
figure 9.2. The figure shows the average widths of the search trees that were
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Figure 9.2: Width of search tree for 40-bit A5/1 generator

found in the experiments. It also gives the bounding functions 4d and 239−d for
convenience. The following observations can be made:

• The tree width at depth d matches the predicted value of min(4d, 239−d)
surprisingly well.

• In the widest part of the tree (d = 14), the actual number of nodes is
smaller than the predicted upper bound, which was to be expected.

• In the lowest part of the tree (d > 34), the actual number of nodes is larger
than predicted by the function 239−d. This is due to the fact that for the

1For simplicity’s sake, we ignore the fact that only 5

8
·240 inner states are actually possible.
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A5/1 generator, there is a chance that several inner states map onto the
same output sequence, i.e., assumption 4 does not hold for high values of
d. This, however, does not affect the performance of the algorithm, since
the running time is almost exclusively determined by the widest part of
the tree.

In our experiments, an average of 1.758 inner states that produce the same
output were found. Judging from the empirical data as given in table 9.3, it
seems that the probability of an output stream (generated from a random seed)
having m generating keys is approximately 2−m for small values of m. Whether
or not this assumption is correct and whether or not it also holds for the full
version of A5/1 remains an open problem.

equivalent keys 1 2 3 4 5 6 7
frequency 64 33 17 2 3 - 1

Table 9.3: Frequency of equivalent keys for 40-bit A5/1 generator

9.4 Other generators

In this section, some other generators from the literature will be reviewed and
some dos and don’ts when using the above attack and the associated technique
for upper bounding the efficient key length will be pointed out.

Alternating step generator: As a first example, consider the alternating
step generator [57]. The generator consists of three LFSRs C, A and B. For
each clock t, the output ct of LFSR C is determined. If ct = 0, clock LFSR
A, else clock LFSR B. Finally, add the current output bit of LFSRs A and B
(modulo 2) and append it to the output stream.

Noting that there are only two options for the clock control, it follows that
log(k) = log(2) = 1 and thus w = l/2. Consequently, there is an absolute
upper bound of 0.5l bit on the efficient key size of this kind of generator. This
holds independently of the the choice of all other paramters. In particular, while
increasing the length of LFSR C at the expense of LFSRs A and B improves
protection against simple LCT attacks, this measure remains useless against
dynamic LCT using clock control guessing.

Stop-and-go generator: The {0, 1}-clocked generator (also denoted as stop-
and-go generator [8]) consists of two LFSRs C and A, where the output bit
is taken as the least significant bit of LFSR A. While LFSR C is clocked
regularly and outputs c0, c1, . . ., LFSR A is clocked iff ct = 1. As a consequence,
the output sequence y has a probability of 3/4 that the condition zt = zt−1

holds. Thus, certain output sequence prefixes are much more likely than others,
contradicting property 4. Thus, even though the clock control guessing attack
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can be implemented against the stop-and-go generator, the estimate cannot be
used without further thought.

{1, 2}-clocked generator: Simply by changing the clocking delivered by LFSR
C to {1, 2} instead of {0, 1} while leaving the rest of the design unchanged, the
output anomaly of the stop-and-go generator disappears. Since the behaviour of
the clock control can be described as for the alternating step generator and since
there are only 2 possible behaviours of the clock control, the upper bound for
the efficient key length of the step1-step2 generator must be 0.5 l, independently
of the individual parameters.

[1..D]-decimating generator: More generally, a generator might pick some
bits from LFSR C and interpret them as a positive number ξ ∈ {1, . . . , D}.
Then, register A is clocked ξ times before delivering the next output bit. Such
a generator is called [1..D]-decimating generator [55]. If it meets conditions 1-4,
a clock control guessing attack is possible and has an efficient key length of at

most log(D)
log(D)+1 l bit.

Cascade generator: A [1..D] decimating generator can be further generalised
by turning it into a cascade, using s LFSRs X1, . . . , Xs instead of just 2. In
[55], Gollmann and Chambers describe some possible constructions for cascade
generators obtaining good statistical bitstream properties.

A typical example is a cascade of stop-and-go generators where the output
bit of LFSR Xi controls the clocking of LFSR Xi+1 and is also added to the
output of LFSR Xi+1. Since the basic clock-control mechanism (stop-and-go)
meets conditions 1-3, the cascade generator can be attacked using clock control
guessing. Since the cascade (as opposed to the simple stop-and-go generator)
meets assumption 4, the above technique can be used to derive an upper bound
on the effective key length. Note that there are k = 2s−1 possible behaviours
for the clock control, yielding log(k) = s − 1 and an efficient key length of at
most s−1

s l.
Note that this is not identical to the näıve LCT attack of guessing the

contents of the uppermost s− 1 registers and deriving the content of the lowest
LFSR from the output stream. This näıve attack has computational cost in
the order of O(2l−lX ), where lX is the length of the final LFSR. If lX < l

s , the
clock control guessing attack will usually be more efficient than the simple LCT
attack.

Shrinking generator: Note that the shrinking generator, too, can be viewed
as a clock-controlled generator, where register A is clocked once with probability
1/2, twice with probability 1/4 a.s.o. before producing one bit of output. Thus,
the number of possible clock control behaviours is rather large (up to lC different
possibilities), the property 3 is violated, and the attack is not applicable in
a straightforward manner. In this case, the bit guessing attack presented in
chapter 8 seems to obtain better results.
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9.5 Conclusions

Design recommendations: We have shown that while running time esti-
mates for dynamic LCT attacks against general PRGs are not easily found, an
upper bound can be given for a class of clock-controlled generators. Most gen-
erators proposed in the literature that belong to this class have rather simplistic
clock control rules, often yielding k = 2 and thus cutting the efficient key length
down to l/2 without any further analysis. If this is not acceptable, any of the
following design changes increases resistance against our attack:

• Increase the number of possible behaviours for the clock control. As a
consequence, the search tree expands rather rapidly, making the search
more difficult.

• Choose a non-linear function for the clock control.

• Choose a non-linear function for the output bit extraction.

The LILI generator: A generic example of a clock-controlled pseudoran-
dom generator that can be designed to follow all of those design criteria is the
LILI generator [113]. The generator consists of two LFSRs C and A, where C
determines the clock control and A the output. The clock control ct is deter-
mined from the inner state of LFSR C by a bijective function fc : {0, 1}m →
{1, . . . , 2m}, and the output bit yt is computed from the inner state of LFSR A
using a Boolean function fd : {0, 1}n → {0, 1}. If the values m and n are chosen
large enough and if the functions fc and fd are non-linear, the generator should
be safe from clock control guessing attacks2.

As mentioned before, however, security against one class of attacks does not
necessarily imply security of the generator in general. In the case of the LILI
generator, correlation attacks proved to be fatal [65], as did time-memory trade-
off attacks [2, 105]. In way of a conclusion, note again that good cipher designs
have to resist all known cryptanalytic techniques, with clock control guessing
being just one of them.

2The mapping fc(x1, . . . , xk) = 1 + x1 + 2x2 + . . . + 2k−1xk that was proposed by the
authors is easily modelled using linear equations. This should not be a problem, as long as
the other design criteria are met. For paranoia’s sake, however, a non-linear permutation
might be considered instead.
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Part IV

The Role of the Inner State
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Chapter 10

Deployment of PRGs in
Stream Ciphers

10.1 Motivation

Seed and key, revisited: So far, when considering a pseudorandom gener-
ator, it was assumed that the seed S0 was equal to the key k (see section 3.1).
There are, however, a number of reasons why for practical ciphers, seed and key
are different concepts:

• Remember from section 2.1 that in most cases, sender and receiver want
to exchange more than one message before exchanging new keys. When
using a PRG, this means that two messages m, m′ would be encrypted to
ciphertexts c, c′ using the same PRG output stream z. In this case, the
following property holds for all i = 0, 1, . . .:

ci ⊕ c′i = (mi ⊕ zi)⊕ (m′i ⊕ zi)
= mi ⊕m′i

In other words, the bitwise sum of the ciphertexts equals the bitwise sum
of the plaintexts, enabling the attacker to mount a ciphertext-only attack
using the plaintext statistics. In order to prevent such a scenario, the seed
S0 is computed not only from the key k, but also from a so-called nonce
value1. This value is publicly known, but changes for every message which
is to be transmitted.

• An alternative solution would be for both sender and receiver to mem-
orise the current inner state Si after transmitting message m, resuming
encryption with state Si+1 for the subsequent message m′. In practice,
however, designers face the so-called synchronisation problem: When bits
are lost or replicated in transmission, sender and receiver obtain different

1Nonce stands for a “number used once”, cf., e.g., [33], p. 72.
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Figure 10.1: General model of a pseudorandom generator

values for the counter i. In order to restore synchronisation, the PRG
is reset to an initial value after a certain number of bits. Thus, keeping
an ongoing counter i over a longer period is not a viable option; instead,
frequent re-initialisation with varying seed values is necessary.

• Another advantage of separating key and seed for practical systems is
the possibility to choose between different key lengths. In some countries,
limits on the allowable key sizes exist, forcing cryptographic products that
are exported to different countries to support different key sizes. In this
case, it is advantageous if the PRG (including the seed size) is the same
for all products, while the key size can be chosen as desired.

• Finally, the security of a PRG-based encryption scheme can be improved
by choosing the seed size larger than the key size. This will be elaborated
on in section 11.2.

10.2 Extending the basic model

Basic model: Remember the model of a PRG from section 3.1. In a slight
modification of the initial description, the generator is now allowed to produce
w bit of output at once. In addition, a set S of valid inner states is defined,
yielding a PRG G with the following components (see figure 10.1):

(a) An inner state Si ∈ S with S ⊆ {0, 1}n,

(b) an update function f : S → S that modifies the inner state with each clock,
and

(c) an output function g : {0, 1}v → {0, 1}w, w ≤ v ≤ n, that uses the inner
state to compute w output bits with each clock.
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Deployment in stream ciphers: A stream cipher is an encryption scheme
where each block of plaintext is encrypted in a time-dependend fashion, i.e., the
method used to encrypt mi differs from the method used for mi+1. Obviously,
adding the output of a PRG bitwise to the plaintext is a simple form of a stream
cipher. More generally, when using a PRG in a stream cipher, the following
additional components are required:

(A) A secret key k ∈ {0, 1}l that is not necessarily identical to the seed S0,

(B) an initialisation function h : {0, 1}l×{0, 1}m → S that derives the seed S0

from the key k and an m-bit nonce value N , and

(C) the xor-function ⊕ : {0, 1}w × {0, 1}w → {0, 1}w which adds the PRG
output bitwise modulo 2 to the plaintext, generating the ciphertext2.

Attacker model: Recall from section 2.1 that the attacker knows all about
the stream cipher with the exception of k. In particular, apart from being aware
of the inner workings of the PRG, he also knows the initialisation function h
and the nonce value N . For a rigorous analysis, N is often even assumed to be
under the control of the attacker, i.e., he may choose any value for N and can
obtain some output bits generated by the PRG under N and the unknown key
k.

In section 3.1, the attacker was considered successful if he either reconstructs
the setM′ of consistent messages (prediction attack) or the set K′ of consistent
keys (key reconstruction attack). If {zi1 , . . . , zis} is the set of known output
bits and Gi(S0) denotes the i-th output bit of the generator G initialised with
seed S0, these definitions have to be adjusted as follows:

z′ ∈ Z ′ ⇔ z′i = zi ∀i ∈ {i1, . . . , is} and ∃k′ ∈ K : G(h(k′, N)) = z′

k′ ∈ K′ ⇔ Gi(h(k
′, N)) = zi ∀i ∈ {i1, . . . , is}

In addition, the attacker will also be considered successful if he can reconstruct
the set S ′ of consistent seed values, which is defined as

S0 ∈ S ′ ⇔ Gi(S0) = zi ∀i ∈ {i1, . . . , is} and ∃k′ ∈ K : h(k′, N) = S0 .

This type of attack is denoted as state reconstruction attack. Note that the set
S ′ is smaller than the set of all seed values producing zi1 , . . . , zis , which may
or may not be an advantage when cryptanalysing the stream cipher. Also note
that finding K′ implies finding S ′, which in turn implies finding Z ′.

Distinguishing attacks, revisited: Remember from section 2.2.2 that in
the asymptotical security model, an attacker is considered successful if he can
distinguish the encryption function from a truly random function with signif-
icant probability. Applying this concept to a PRG-based stream cipher, an

2In fact, other functions like addition modulo 2w are also possible, but rarely used.
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attacker would be successful if he can tell a random bit stream apart from an
output stream generated by the generator.

In the asymptotical model, a distinguishing attack is equivalent to a predic-
tion attack [123].3 Transferring the concept into the empirical security model
is possible, but not all distinguishers running in less than 2l steps imply the
existence of an efficient prediction algorithm.

As a consequence, the practical relevance of distinguishing attacks against
stream ciphers is disputed [99]. Nonetheless, a successful distinguishing attack
may indicate a weakness of the stream cipher under consideration. For this
reason, security against distinguishing attacks will be required from the stream
ciphers considered in the next sections.

10.3 Outlook

Problem statement: While a large body of literature exists on the design
of pseudorandom generators (cf. [103, 60], or chapters 2-6 of this thesis), the
deployment of a PRG as a stream cipher is less well researched. Only few guide-
lines exist for the choice of important parameters like key length, inner state
size, or the number of bits produced before re-keying. The same uncertainty
exists with respect to the initialisation function h.

The consequences in practical stream cipher design are twofold. On one
hand, an increasing number of stream ciphers is broken not by attacking the
PRG, but by attacking the initialisation function (e.g., RC4 as used in the WEP
protocol [116], or A5/1 from the GSM standard [32]). There exist a few gen-
eral attack techniques against weak setup functions for stream ciphers (e.g.,
resynchronisation attacks [27, 52]), but no design criteria for good initialisation
functions. Considering recent research progress on related key attacks for pseu-
dorandom functions (see [9] and subsequent work), more problems for stream
ciphers designed in an ad-hoc manner are to be expected in the future.

On the other hand, when a cipher is successfully attacked, a common solution
is to change the parameters while keeping the general design intact. Examples
include increasing the inner state size (e.g., for LILI-II [20]) or decreasing the
security level (e.g., for Sober-128 [58]). For some ciphers, huge security margins
for the parameters are used in the first place (e.g., more than 33,000 bit of inner
state for SEAL [98]), making the stream cipher unsuitable for resource-restricted
applications.

The role of the inner state: The remaining contents of part IV are taken
from [130, 131]. They consider the construction of a stream cipher from a PRG
and a matching initialisation function. Note that the inner state of the cipher
forms the interface between those two primitives. While a large inner state is
advantageous for the security of the PRG, it makes the task of the initialisation

3If the generator output can be predicted, it can obviously be distinguished from random.
If distinguishing is possible, the next bits can be guessed and checked for correctness using
the distinguisher.
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algorithm more difficult. Thus, the inner state should be chosen as large as
necessary, but as small as possible.

The goal of chapter 11 is to improve the understanding of the necessity and
the limitations of the inner state. To this end, a formal definition of the inner
state size is given in section 11.1, along with an illustration why such a defini-
tion is not as trivial as it may seem. Section 11.2 discusses the cryptographic
relevance of inner states, giving lower bounds on the minimum size as well as a
construction for a secure stream cipher when inner state size and initialisation
time are not critical. The chapter is concluded by section 11.3, highlighting
some of the disadvantages associated with allowing such large inner states.

In chapter 12, a design criterion denoted as efficient inner state size is intro-
duced which measures the contribution of the inner state size to the security of
the stream cipher. After a formal definition is given in section 12.1, a number
of practical stream ciphers is surveyed (section 12.2). The results are compared
(section 12.3), leading to the conclusion that not unexpectedly, large inner states
do not make strong stream ciphers as long as the underlying PRG is crypto-
graphically weak.
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Chapter 11

On the Role of the Inner
State Size

11.1 Defining the inner state size

11.1.1 Problem illustration

Surprisingly, defining the size of the inner state is not as trivial as it may seem.
Consider the following examples as an illustration.

SOBER-128: This nonlinear filter generator proposed by Hawkes and Rose
[58] is an almost ideal case. The inner state consists of

• an LFSR with 17 words taken from GF(232),1 producing an m-sequence
with period 2544 − 1, and

• a key-dependend constant of 32 bit length.

Assume that the cipher is used with a large key (l À 32) and a nonce value.
In this case, for all inner states S with the exception of the all zero LFSR
assignments, there exists a key k, nonce value N , and count i such that S0 =
h(k,N) and f i(S0) = S. Thus, there is little doubt that the inner state size is
576 bit.

RC4: The algorithm that is generally assumed to be Rivest’s RC4 generator
[75] takes some more thought. At first glance, the 8-bit version uses an inner
state table that consists of 256 bytes, along with two 8-bit variables, yielding
an inner state of 2048 + 16 = 2064 bit.

1Note that while in section 3.2, LFSRs were defined over GF(2), a theory exists to construct
m-LFSRs over any finite field (see, e.g., [73, 100]).
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However, this table is used to store permutations over Z256, which reduces
the number of possible table states to 256! ≈ 21684. Thus, it could be argued
that the inner state is about 1684 + 16 = 1700 bit long.

If, however, the size is defined by the number of states that can actually
be attained, things get even more complicated. The initial values of the 8-bit
variables are key-independent, and it was demonstrated by Finney [35] that an
easily characterised class of inner states can never occur. Thus, the inner state
size lies somewhere between 1684 (derived from the number of valid starting
states) and 1700 (derived from the number of representable states), where none
of the bounds is tight.

SEAL 3.0: The generator proposed by Coppersmith and Rogaway [98] uses
two different kinds of inner states. On one hand, there are 8 32-bit variables and
12 counter bits that change constantly over time. Since they can in principle
attain all possible values, they contribute 268 bit to the inner state size.

On the other hand, however, the algorithm uses huge lookup tables R, S
and T with a total size of 32,768 bits. These tables are generated from the
160-bit key and a 32-bit nonce using a hash function in counter mode.2 Since
they are never modified during output stream generation, only 2192 different
assignments to the tables are possible. One might be tempted to state that the
tables contribute only 192 bit to the size of the inner state, but then again,
no efficient algorithm is known that distinguishes a valid table setting from an
invalid one. This means that in practice, a possible attacker faces the full state
space of 33,036 bits.

Adding to the conceptional confusion, one table contains values that are
used only once during the encryption process. Thus, given enough processing
time, the corresponding entries could be calculated as need arises, making it
possible to replace a 8, 192 bit table by a simple 6-bit counter in an algorithmic
implementation. This raises the question of whether or not the inner state size
is reduced, too.

11.1.2 Autonomous finite state machines

A näıve candidate for the inner state size is the length n of the inner state
representation, as described in section 10.2. There is, however, the obvious
problem that the same generator may be represented in different ways, yielding
different values of n depending on the concrete implementation.

Instead, in order to derive a unique definition of the inner state size, consider
an autonomous finite state machine (AFSM) implementing the generator. Such
an AFSM consists of a set S of inner states, and for each inner state S ∈ S,
there exists

• a transition rule that defines the next state f(S) for S, and

• a label defining the output g(S) generated from S.

2For definitions, see any textbook on cryptography, e.g., [86].
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In addition, each finite state machine needs a set S0 of valid starting states.

Note that there exists an infinite number of AFSMs describing a given gener-
ator. In particular, the size of the AFSMs (i.e., the number of inner states) can
vary arbitrarily. Thus, in order to find a unique value for the number of inner
states, the notion of the minimal AFSM describing the generator is introduced.

An AFSM is said to generate an (infinite) output sequence z = (z0, z1, . . .) if
there exists a starting state S0 ∈ S0 such that zi = g(f i(S0)) for all i = 0, 1, . . ..
Two AFSMs A and B are said to be equivalent if all (infinite) output sequences
produced by A are also produced by B, and vice versa. As a consequence, all
AFSMs that describe a given PRG are equivalent. An AFSM is said to be
minimal if no equivalent AFSM of smaller size exists. Thus, if a minimal AFSM
for a given generator can be found, its size yields the minimal number of inner
states required to implement the generator.

11.1.3 Valid starting states

The size of a minimal AFSM for a given generator depends on the set S0 of valid
starting states. Consider, as a toy example, a 2-bit version of the RC4 generator,
where the inner state consists of two 2-bit variables and a table representing a
permutation over {0, 1, 2, 3}.

1. If all assignments to the two 2-bit variables are allowed and all assignments
to a 4× 2-bit table as initial states, then the minimal AFSM has 24+8 =
4096 inner states, all of which are starting states.

2. If all assignments to the variables are allowed, but the table entries are
restricted to correct permutations, the minimal AFSM will have 24 · 4! =
384 inner states, all of which are starting states.

3. If the variables are initialised to zero (as we should for a correct RC4
implementation), there are only 4! = 24 starting states left, and exactly
24 states are no longer reachable. Thus, the size of the minimal AFSM
drops to 360.

4. If the initialisation function h and the key length l are taken into account,
the number of starting states may even be smaller, which in turn may or
may not affect the size of the minimal AFSM.

Note that the inner state size should depend only on the PRG. Thus, the ini-
tialisation function must not be considered when defining S0, discarding case
4. However, what should be known is the interface between the PRG and the
initialisation function: A set of conditions that the output of any initialisation
function must meet in order to guarantee the correct working of the generator.
In the case of 2-bit RC4, those conditions would be the ones described in case
3: Both variables must be set to zero, and the table must contain an arbitary
permutation over {0, 1, 2, 3}.
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11.1.4 Final definition

Basic model, extended: A PRG consists of an inner state space S, an up-
date function f , and an output function g, as described in conditions (a) to (c)
in section 10.2. However, it must also have an additional component, namely

(d) a Boolean predicate C : S → {0, 1}, such that an inner state S is a valid
starting state iff C(S) = 1.

Analogously, condition (B) in section 10.2 must be corrected such that a stream
cipher contains

(B) an initialisation function h : {0, 1}l × {0, 1}m → S that derives a starting
state S0 from the key k and an m-bit nonce value N , such that C(S0) = 1.

Inner state size: Given the above definitions of a PRG, a (minimal) au-
tonomous finite state machine and its size, the unique inner state size of the
generator can be defined as follows:

Definition 2 Let G be a PRG as defined above, and let A be a minimal AFSM
implementing G. Then the inner state size of the generator G is defined as
n̂ := dlog(|A|)e, where |A| is the number of inner states of A.

Note that for many generators, only an upper bound on the inner state
size can be given. Only in a few cases (like LFSR), it can be proven that all
presumed inner states are actually reachable from a valid starting state.

11.2 Advantages

11.2.1 The necessity of large inner states

Remember that l denotes the key length, n̂ the inner state size and n the length
of the inner state representation (n ≥ n̂). For most practical stream ciphers, it
can be observed that n > l holds. In this subsection, it will be shown that this
is in fact a necessary condition for secure stream ciphers.

First lower bound: The main design goals of practical stream ciphers are
security and efficiency. In order to achieve the efficiency goal, the functions f , g
and h are chosen to be as simple as possible. In particular, g : {0, 1}v → {0, 1}w
is often constructed such that w ≤ v < min{l, n}.

Lemma 1 Let the output function g depend on v < l inner state bits and let
the output be balanced. Then the PRG cannot be secure if n < l + w.
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Proof: For such a generator, a guess-and-verify attack can be developed: The
attacker guesses all v bits of the inner state representation that are input to
g (since v < l, this is feasible in our attack model). He then verifies whether
the output of g matches the observed value z0. Since g is balanced, only 2−w

of all assignments meet this criterion, strongly reducing the search space. The
attacker can now mount a complete search over the remaining assignments,
yielding an attack in 2n−w steps. If n < l + w, this attack would be more
efficient than brute force search over the key space of the stream cipher. 2

Since the value n depends on the implementation and is thus not under the
control of the cipher designer, the inner state size must be chosen such that the
above attack becomes infeasible for all implementations.

Corollary 1 If v < l, a necessary condition for a secure PRG is n̂ ≥ l + w.

Note that for many ciphers, this attack can be extended using a backtracking
approach like the one described in part III, yielding an even greater lower bound
on the minimum size of the inner state.

Second lower bound: The requirement for a large inner state gets even
stronger if the attacker has a large amount of output bits at his disposal. In
this case, time-memory-data tradeoff attacks as described in section 5.5 have to
be taken into account, as follows.

Lemma 2 Let L be the number of output bits available to the attacker. Then
the PRG cannot be secure if n < l + log(L).

Proof: A general time-memory-data tradeoff for w = 1 works as follows:

• Precomputation phase: The attacker draws a large sample (say, 2l−ε) of
inner states at random from S. For each sample state Si, the generator is
run to produce an l-bit output zi. The tuple (zi, Si) is stored in a table,
indexed by zi.

• Attack phase: The attacker segments the known output stream into roughly
L overlapping frames z̃j of l bits3. For each frame, he checks whether z̃j

is contained in the table, and if yes, he extracts the inner state S.

By the birthday paradox, there is high probability for a collision between the
set of samples zi in the table and the set of observations z̃j in the output stream
if 2l−ε · L ≈ 2n. Since this attack requires 2l−ε precomputations and L table
lookups, it is feasible for the attacker if n ≈ l + log(L)− ε, where ε is small.
Note that this proof can be generalised for arbitrary values of w by using frame
lengths that are multiples of w, yielding the same result. 2

Again, the cipher designer cannot control n, but only the inner state size n̂.
Remembering that an attacker who is restricted to 2l operations can read at
most L = 2l output bits, the following lower bound is obtained:

3To be exact, there are L− l+ 1 such frames.
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Corollary 2 If the generator produces arbitrarily large output streams, a nec-
essary condition for a secure PRG is n̂ ≥ 2l.

11.2.2 A generic construction

We have seen that for efficient and secure stream ciphers, the inner state size
n̂ must be strictly larger than the key size l. An obvious question is: What
happens if n̂ is increased even further? It can be shown that a large inner state
can be used to make up for the deficiencies of a relatively weak PRG design. To
this end, a cryptographic primitive denoted as preimage resistant hash function
can be used.

Definition 3 [86] A hash function Hn : {0, 1}∗ → {0, 1}n is said to be preimage
resistant if given a value y ∈ {0, 1}n, it is infeasible to find a value x ∈ {0, 1}∗
such that Hn(x) = y.

Constructing the stream cipher: Let H = {Hn | n ∈ N} be a family of
preimage resistant hash functionsHn : {0, 1}∗ → {0, 1}n. Let G = {Gn | n ∈ N}
be a family of PRGs with n = n̂.4 Furthermore, let the generator be such that
the mapping from state space to the first n output bits is bijective. Finally,
assume that there exists a known parameter c, 0 < c < 1, such that for any
generator Gn ∈ G and given n bits of output stream, predicting additional
output bits will require at least 2cn computational steps for all but O(1) cases.

Given these building blocks, a stream cipher with security level l can be
constructed as follows. First, n is chosen such that c · n > l, and use Gn

as PRG. The n bits of inner state for generator Gn are initialised using the
matching hash function Hn : {0, 1}l × {0, 1}m → {0, 1}n.

Security against key reconstruction: It can be shown that such a stream
cipher is secure against inversion attacks, as long as no assumption about Gn

and Hn is violated.

Lemma 3 If for the stream cipher (Gn, Hn), the key can be reconstructed in
less than 2l steps, then the hash function Hn can be inverted in less than 2l + n
steps.

Proof: Assume that there exists an attacker A who, given the description of
(Gn, Hn) and at least n bit of cipher output z, can reconstruct the key in less
than 2l steps. Then an inverter A′ can be constructed who, given a valid output
y of the hash function Hn, finds a corresponding input x such that Hn(x) = y.

• A′ runs the PRG on inner state representation y, producing n bit of cipher
output z = Gn(y).

4Many PRGs are of that kind, e.g., most generators based on the principles described in
section 3.3.
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• A′ invokes A with input z and obtains a key k with Gn(Hn(k)) = z.

• A′ outputs k.

Note that k meets the condition Gn(Hn(k)) = z. Since Gn is injective, there
exists only one intermediate value y with Gn(y) = z, implying that Hn(k) = y.
Thus, A′ has inverted the hash function, using 2l + n computational steps. 2

Security against prediction: Analogously, it can be shown that the stream
cipher is secure against prediction attacks, as long as the output of PRG Gn

cannot be predicted in less than 2cn computational steps in all but a small
number of cases.

Lemma 4 Let Hn such that for all x, y ∈ {0, 1}l, it holds that Hn(x) 6= Hn(y).
Then if the stream cipher (Gn, Hn) can be predicted with probabilty p in less
than 2l steps, then the PRG Gn can be predicted with the same probabilty p in
less than 2l steps in at least 2l out of 2n cases.

Proof: Assume that there exists an attacker A who, given the description of
(Gn, Hn) and output bits (z0, . . . , zn−1), can predict output bits (zn, . . . , zn+d−1)
correctly in less than 2l steps. Then a trivial predictor A′ can be constructed
who, given a valid output (z0, . . . , zn−1) of Gn, can predict the subsequent out-
put bits (zn, . . . , zn+d−1) in at least 2l different cases.

• A′ runs A on input (z0, . . . , zn−1) and obtains bits (zn, . . . , zn+d−1).

• A′ outputs (zn, . . . , zn+d−1).

Note that due to the injectivity of Gn, (z0, . . . , zn−1) was generated from a
unique starting state S0. For the analysis, we have to distinguish two cases:

(a) If S0 is a possible output of Hn, the sequence (z0, . . . , zn−1) is a correct
output of the stream cipher (Gn, Hn). Thus, if A predicts correctly for
the stream cipher, A′ predicts correctly for the generator.

(b) If, however, no key k exists such that Hn(k) = S0, the behaviour of A
(and thus of A′) is undefined - the prediction may or may not be correct.

In any case, the running time of A′ is identical to the running time of A, yielding
an effort of less than 2l steps. Note that the algorithm is always right if case
(a) occurs, yielding a correct prediction in at least 2l (out of 2n) cases. 2

11.3 Disadvantages

In fact, practical stream ciphers often use a relatively weak PRG and rely on the
inner state size and the initialisation function for security. Since constructing a
cipher in the above way is tempting, why not use it as a general design rule?
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With all their advantages as demonstrated in section 11.2, large inner states
also have a number of drawbacks:

1. Memory is not for free. While on a modern PC, sufficient memory should
be available for all reasonable PRG designs, other platforms like encryp-
tion hardware, smartcards, sensor networks, or RFID transponders may
require a more economical use of resources.

2. Cryptographic memory must be protected from observation (both on gen-
eral purpose and specialised hardware). Thus, an increase in memory
size increases the options of an attacker, e.g., for side-channel attacks (see
[69, 70] and subsequent work).

3. As mentioned in section 10.1, most stream ciphers are frequently re-
initialised. This can be due to synchronisation problems, but also for
cryptographical reasons.5 Thus, initialisation should be fast, which gets
increasingly difficult with growing inner state size.

4. On the other hand, initialisation should be secure, i.e., a good mixing of
key and nonce into the starting state should be obtained. This, too, is
difficult to obtain if the inner state is large.6

As a consequence, the inner state size should be as large as necessary (see section
11.2), but at the same time as small as possible. To this end, in the following
chapter, a new measure of security will be introduced, and some PRG-based
stream ciphers will be surveyed with respect to the inner state size required to
obtain practical security.

5Remember that once the number of subsequent output bits available to the attacker gets
large, most PRGs become vulnerable to a wide range of cryptanalytic techniques, like time-
memory-data tradeoffs, correlation attacks, or algebraic attacks.

6This line of research was pointed out by W. Meier [80].
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Efficient Inner State Size

12.1 Definition

In chapter 11, it was shown that the inner state size should be

a) large enough to guarantee security of keystream generation, but

b) small enough to allow for efficient and secure initialisation.

It was also discussed that for a generator to be secure independently of the
number of output bits produced, an inner state size of 2l bit is necessary if a
security level of l bit is to be obtained. As with all lower bounds, however,
this does not prove that secure generators of inner state size 2l can actually be
constructed. On the other hand, no keystream generator of size n̂ < 2l has been
proven to be secure against a system-theoretic attacker. Thus, there is no upper
bound on the necessary inner state size.

We can, however, survey a number of proposed PRGs and known attacks,
giving us an indication of what inner state sizes have led to what security levels.
Note that practical generators tend to be designed for fixed key lengths and
inner state sizes. For the same reason, the computational effort for the attacks
is a fixed value instead of being a function in l. Thus, in order to make different
generators comparable, a security measurement is required that is independent
of the actual key and inner state size.

Definition 4 Let G be a PRG, and let A be the best known attack against G.
The efficient inner state size of G is a number σ ∈ R such that executing A takes
as many computational steps as a brute force search over 2σ starting states of
G.1 The quotient γ = σ/n̂ is denoted as the inner state efficiency and is a
measure for the quality of the PRG G.

1Note that the efficient inner state size is defined in analogy to the so-called efficient key
size. An encryption system has efficient key size τ if the best known attack has a work effort
equivalent to a brute force search over 2τ keys.
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12.2 Survey of fielded generators

In the following, the inner states and best known attacks for a number of PRGs
are discussed. Note that as with the examples in section 11.1, no full descrip-
tion of the generators is presented, but a reference to the specification is given
instead. Also note that as opposed to the PRGs mentioned in parts I to III
of this thesis, not all generators discussed here are based on LFSRs. Finally,
observe that all PRG proposals under consideration are at least 3 years old in
order to allow some time for cryptanalysis.

For most generators, the inner state can be subdivided into a linear part
(i.e., the update function is linear), a nonlinear part, and key-dependent S-boxes
which may or may not be bijective.2

A5/1: This stream cipher is part of the GSM mobile phone standard, its
details were reverse engineered by Briceno et al. [15]. As can be seen from the
description in section 9.3, its inner state consists of LFSRs with a total length
of 64 bit. Since all initial assignments to these registers are possible, the inner
state size is indeed 64 bit.
Numerous attacks have been proposed against the full A5/1 stream cipher, all
taking into account that in practice, only a small number of output bits is
available to the attacker [48, 12, 10, 97, 128]. If, however, an arbitrary amount
of output bits is available, the generic time-memory-tradeoff attack as described
in section 5.5 is most efficient, yielding σ = 32.

E0: This cipher encrypts data in the Bluetooth communication standard [14].
Its inner state is composed of a 128 bit linear part and an additional 4 bit of
memory to destroy the linearity.
Currently, an algebraic attack proposed by Courtois [24] using equations devel-
oped by Armknecht and Krause [1] is the most efficient method of cryptanalysis
published, requiring roughly 249 computational steps. Note, however, that the
attack requires more consecutive output bits than the cipher produces between
two re-initialisations. Thus, while it successfully attacks the PRG, it does not
endanger the security of the Bluetooth standard itself.

Leviathan: This cipher was proposed by McGrew and Fluhrer [79] as a contri-
bution to the NESSIE competition.3 Its inner state consists of a 48-bit counter
and 4 permutation tables over {0, 1}8. Thus, the overall inner state size is
48 + 4 · 1, 684 = 6, 784 bit.

2A substitution box (or S-box) in cryptography implements a nonlinear mapping. For an
introduction on the design of S-boxes, cf., e.g., [28].

3NESSIE stands for “New European Schemes for Signatures, Integrity, and Encryption”
and was a EU-funded project with the objective of finding strong cryptographic algorithms.
The NESSIE competition started in 2000 and ended in 2003 with the announcement of the
accepted candidates. In the section “Stream Ciphers”, no candidate was selected as satisfying
both security and efficiency conditions [91].
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The best known attack against Leviathan is a distinguisher by Crowley and
Lucks [26], requiring 239 bits of output and a similar work effort.

LILI-128: This pseudorandom generator designed by Dawson et al. [29] was
also a NESSIE submission. Its inner state consists of two independent linear
states of sizes 39 and 89 bit, respectively, yielding a total inner state size of 128
bit.
Given the construction of the cipher, a security level of 128 bit (the security
goal for the NESSIE project) was not achievable in the first place due to lemma
1. As a consequence, a number of attacks on LILI-128 have been published,
the most efficient one being a specialised time-memory attack by Saarinen [105]
that requires roughly 248 computational steps. Note that an attack proposed
by Courtois in [24] formally requires less computational steps, but needs 260

output bits.

RC4 (8-bit version): Officially, the stream cipher RC4 designed by Rivest
is still a trade secret. Nonetheless, the design presented in [75] is widely be-
lieved to be identical to RC4. As described in section 11.1, its inner state
consists of two 8-bit state variables and a table that implements a permutation
{0, 1}8 that changes over time. Normally, this would yield an inner state size
of 16 + 1, 684 = 1, 700 bit. However, the starting values for the state variables
are key-independent, and it was shown by Finney [35] that a fraction of 1/256
states can never be reached. Experiments on smaller versions of RC4 seem to
indicate that the fraction of non-reachable states is even larger but still small
enough that 1, 700 is a good approximation of the inner state size.
Numerous attacks against RC4 have been described. A particularly strong at-
tack against its PRG was proposed by Golić [47] and improved by Fluhrer and
McGrew [37]. The attack is a distinguisher that requires 230.6 output bits and
a similar amount of work.

Seal 3.0: As discussed in section 11.1, the generator proposed by Rogaway
and Coppersmith [98] uses a 12 bit counter, 8 32-bit state words, and a set of
lookup tables consisting of 1024 32-bit words, contributing up to 32, 768 bit to
the inner state. Thus, the inner state size of the generator is 33, 036 bit.
While the state words are re-initialised every 26 · 27 = 213 output bits, the
tables are re-initialised once every 219 output bits. Thus, SEAL has two ini-
tialisation functions h1 and h2, and can be considered as a stream cipher
(H,G) = ((h1, h2), g). Note that the best known attack - a distinguisher by
Fluhrer [36] that requires rougly 243 computational steps - is only applicable if
(h2, g) is considered as the PRG.4

4Note that the inner generator g works in the way of a a one-time pad: It masks the state
words using words from the lookup tables, none of which is used more than once. Thus, only
by observing the working of h2, the generator can be attacked, otherwise, it would be secure
in an information-theoretical sense.
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Generator lmax n̂ σ γ
A5/1 [15] 64 64 32.0 0.5000
Lili-128 [29] 128 128 48.0 0.3750
E0 [14] 128 132 49.0 0.3712
Sober-t32 [59] 256 576 158.0 D 0.2743
SNOW 1.0 [30] 256 576 100.0 D 0.1736
RC4 (8bit) [75] 256 1,700 30.6 D 0.0180
Leviathan [79] 256 6,784 39.0 D 0.0057
Seal 3.0 [98] 160 33,036 43.0 D 0.0013

Table 12.1: Pseudorandom generators of fielded stream ciphers

Snow 1.0: This cipher is another NESSIE contribution, designed by Ekdahl
and Johansson [30]. Its linear part contributes 16 32-bit words to the inner
state, while the nonlinear part adds another 2 32-bit words, yielding a total
inner state size of 576 bit.
Amongst the attacks proposed against Snow 1.0, the most efficient is a distin-
guisher by Coppersmith et al. [21], requiring about 2100 computational steps.

Sober-t32: The Sober family of stream ciphers by Rose and Hawkes has a long
genealogy, this particular candidate being another NESSIE submission [59]. As
pointed out in section 11.1, the inner state consists of 17 32-bit words and a
32-bit constant. Thus, the inner state size is 576 bit.
The most efficient attack against full Sober-t32 is a distinguisher presented by
Babbage et al. [3], requiring 2153+5 = 2158 output bits and a similar work effort.

12.3 Comparison of results

From the time-memory-data tradeoff presented in subsection 11.2.1. it follows
that the efficient inner state size of all generators is restricted by n̂/2. Thus,
we have 0 ≤ γ ≤ 0.5 for all generators. For the generators discussed in the
last section, table 12.1 compares the inner state size and inner state efficiency.
We denote by lmax the maximum key length of the overall stream cipher and
by σ the most efficient attack published against the PRG only. Distinguishing
attacks are marked by a ’D’.

For a number of reasons, such a comparison has to be taken with a grain of
salt, since

• running time estimates of attacks only give a rough indication of the work
effort actually involved,

• older ciphers have been analysed for a longer time,

• famous ciphers like RC4 have received more cryptanalytic attention than
less well-known designs,
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• some attacks reconstruct the seed while others are only distinguishers, and

• some attacks require large amounts of output bits while others don’t.

Nonetheless, it can be observed that the stream ciphers with particularly large
internal states have very low inner state efficiencies. But even if comparison
is restricted to those generators that have only distinguishing attacks stand-
ing against them, ciphers with large inner states do not seem to enjoy a real
advantage over ciphers with small values for n̂.

From this comparison, it seems reasonable to assume that values of γ > 0.1
should be achievable for practical pseudorandom generators. Note that more
recent versions of Sober [58] and SNOW [31] exist that correct previous problems
and have not been successfully attacked thus far. Thus, there is hope that the
inner state efficiency can be brought up very close to the boundary of γ = 0.5,
even for practical stream ciphers. A formal proof of this conjecture, however,
seems to be beyond the current state of the art in cryptographic research.
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Chapter 13

Conclusion

In modern cryptography, a number of elementary building blocks like block ci-
phers, stream ciphers, or hash functions are used. Stream ciphers are often based
on pseudorandom generators (PRGs) that are used to transform a small initial
value into a long sequence of seemingly random bits. Many PRG designs are in
turn based on linear feedback shift registers (LFSRs), which can be constructed
in such a way as to have optimal statistical and periodical properties.

In order to understand the security needs of a cryptographic building block,
it is unavoidable to delve into cryptanalysis, which is the activity of searching
for security weaknesses of cryptographic algorithms. The underlying goal of
cryptanalysis is not destructive, but constructive: Only by improving the un-
derstanding of possible problems, it is possible to propose new design criteria for
cryptographic systems. Thus, this thesis discussed both construction principles
and cryptanalytic attacks against LFSR-based PRGs.

In part I, we introduced the basic notions and concepts required for the sub-
sequent chapters. In particular, we introduced formal models for the encryption
system and the attacker, and we gave a definition of when the system can be
considered secure. We also discussed the use of pseudorandom generators in
cryptography and their construction from LFSRs.

In part II, we surveyed the state of the art in cryptanalysis of pseudorandom
generators. We described techniques both against unknown designs and against
generators whose specifications are known to the attacker. We updated earlier
surveys (e.g. [103]) by discussing new attacks and by adding examples and
resource estimates.

In part III, we gave an in-depth discussion of backtracking attacks, a par-
ticular cryptanalytic technique applicable against LFSR-based pseudorandom
generators. After giving a general introduction to the basic method denoted
as dynamic linear consistency test, its potential was demonstrated against the
self-shrinking generator, and an upper bound on the running time was proven
and experimentally verified. A variant of the attack was successfully applied
against a whole class of clock-controlled generators and again, an upper bound
on the security of such generators was proven mathematically and confirmed in
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a trial implementation.
In part IV, we analysed the necessary inner state size for pseudorandom

generators to be deployed in encryption algorithms. After introducing the nec-
essary terminology, the inner state size was formally defined and its advantages
and disadvantages were highlighted. In particular, lower bounds on the neces-
sary size were are obtained, and the security potential of increasing the inner
state size was demonstrated. While proving a formal upper bound is beyond
the current state of cryptographic research, a survey of fielded pseudorandom
generators was given, leading to the conclusion that in practice, secure genera-
tors with inner state sizes very close to the theoretical lower bounds should be
obtainable.
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