On the Efficiency of the Clock Control Guessing
Attack

Erik Zenner *

Theoretische Informatik
University of Mannheim (Germany)
e-mail: zenner@th.informatik.uni-mannheim.de

Abstract. Many bitstream generators are based on linear feedback shift
registers. A widespread technique for the cryptanalysis of those gener-
ators is the linear consistency test (LCT). In this paper, we consider
an application of the LCT in cryptanalysis of clock-controlled bitstream
generators, called clock control guessing. We give a general and very
simple method for estimating the efficiency of clock control guessing,
yielding an upper bound on the effective key length of a whole group
of bitstream generators. Finally, we apply the technique against a num-
ber of clock-controlled generators, such as the A5/1, alternating step
generator, stepl-step2 generator, cascade generator, and others.

1 Introduction

Pseudorandom bitstream generators are an important building block in modern
cryptography. The design goal is to expand a short key into a long bitstream that
is indistinguishable from a true random sequence by all computational means.
In most cryptographic applications, the resulting pseudorandom bit sequence is
added modulo 2 to the plaintext bit sequence.

In this paper, we consider the typical cryptanalytic situation for bitstream
generators. The cryptanalyst is assumed to know the complete algorithmic de-
scription of the generator, with the exception of the inner state. Given a piece
of bitstream, his goal is to reconstruct an initial state of the generator such that
the generator’s output is identical to the known bitstream.

Many bitstream generators are based on linear feedback shift registers (LFSR).
An LFSR implements a linear recursion, transforming a short initial state into a
long bit sequence. If the feedback recursion is chosen such that the corresponding
feedback polynomial is primitive, the resulting sequence displays good statistical
properties. In particular, all short substrings of length [occur with probability of
almost exactly 27!, Throughout the rest of the paper, we assume that sequences
generated by LFSR have this property.!

Nonetheless, a simple LFSR is an easy target for a cryptanalyst. Since the
sequence generated by the LFSR is linear, recovering the initial state is only a

* Supported by the LGF Baden-Wiirttemberg
! For more details on LFSR, refer to [7].

matter of solving a system of linear equations. Thus, LFSR must be employed in
a more involved fashion, adding some non-linearity to the bitstream sequence.

One way of achieving this goal is clock-control. Clock-controlled generators
do not clock all of their LFSR once per master clock, but rather use some
irregular clocking instead. This way, the linearity of the resulting bit sequences
is destroyed.

Organisation of the paper: In section 2, we will give a brief review of the linear
consistency test (LCT) and its adaptive version as previously used in literature.
In section 3, we discuss the technique of clock control guessing, an application of
the LCT that was independently proposed in [14,5,11] for cryptanalysis of the
A5/1 stream cipher. Now, we generalise the technique for use with a certain class
of bitstream generators. Section 4 examines the efficiency of this technique, find-
ing a surprisingly simple upper bound on the efficient key length of all involved
generators. In section 5, we review the clock control guessing attack against A5/1
and give some experimental results. Section 6 considers a number of famous gen-
erators from literature. Finally, in section 7, some design recommendations and
conclusions are given.

On notation: Throughout the paper, the length of the inner state of a generator
will be denoted by L. The initial state S(0) will sometimes be called “key” for
simplicity. Each inner state S(t) determines uniquely a clock control behaviour
& (sometimes referred to as “clocking”) that leads to the inner state S(t + 1).
From the inner states S(0),S(1),..., the generator derives a bitstream that is
denoted by v = (yo, y1, - - .)-

S(0) 22 S(1) 25 5(2) = ...

When LFSR are used, they are denoted by A, B and C. LFSR A has length
|A| and generates a sequence a = (ag, a1, . ..); similarly for LFSR B and C.
Finally, by log(z) we denote the base-2 logarithm log, ().

2 LCT and adaptive bit guessing

Linear consistency tests: In [13], the linear consistency test (LCT) was formally
introduced. In the meantime, it has become a rather widespread cryptographical
technique, albeit the term “linear consistency test” is hardly used anymore. In
short, the technique can be described as follows:

1. Choose a particularly useful subkey K; with |K;| < L.

2. For all assignments « for the subkey Kj:

3. Derive the system of linear equations implied by .

4 If the equation system is consistent:
d. Output k as subkey candidate.
6. Else:
7 Discard k.

Usually, the equation system will be in at most L variables. Since in most prac-
tical applications, the linear equations can be read from a small precomputed
table, each loop of the above algorithm takes O(L?) computational steps for solv-
ing a system of linear equations. Thus, the total running time of the algorithm
is in the order of O(L? - 2/K1l) computational steps.

Ezample: In literature, applications of this technique can often be found in
the (much wider) category of divide-and-conquer attacks. As a simple example,
consider the alternating step generator [8]. The generator consists of three LFSR
C, A and B. For each clock t, the output ¢; of LFSR C' is determined. If ¢; = 0,
clock LFSR A, else clock LFSR B. Finally, add the current output bit of LFSR
A and B (modulo 2) and append it to the bitstream.

Note that this generator can be attacked by a simple LCT attack. The crypt-
analyst guesses the inner state of LFSR, C'. Now, he can compute the behaviour
of the clock control and can form one equation of the form a; © b; = y; per
known output bit. Using the feedback recurrence, he can transform each such
equation such that only variables from the starting state of LFSR A and B are
being used. Finally, he checks the set of resulting equations for consistency.

Thus, the number of linear consistency tests equals 2/€!, taking less than
O(L?) steps each (while the number of wrong key candidates should be negligibly
small, see [13]). This might tempt a cipher designer to choose a large length for
LFSR C' at the cost of the length of LFSR A and B. However, in sections 3 and
4, we shall see that this is not a wise design decision.

Adaptive bit guessing: A variant of the plain LCT technique presented above can
be denoted as adaptive bit guessing. It was used, e.g., by Goli¢ in [4] in order to
break the A5/1 stream cipher, or by Zenner, Krause, and Lucks in [15] for an
attack against the self-shrinking generator.

The general idea is as follows. Instead of guessing all of the subkey in one go,
the subkey bits are guessed one by one, allowing for instant verification of the
linear equation system. This yields a backtracking attack on a clearly defined
search tree. In many cases, this procedure has the advantage that (if an early
contradiction occurs) a whole group of subkey candidates can be discarded at
once, severely improving the running time. However, the running time of this
attack is determined by the number of search tree nodes that are visited, and
this number is often hard to determine in practice.

3 LCT and clock control guessing

Clock control guessing: In connection with clock-controlled bitstream generators,
the LCT technique may be used in a slightly different way, yielding a very simple
method of proving an upper bound on the running time. We consider clock
control generators that have the following properties:

1. The output bit depends on the inner state of the generator in some linear
way.

For each clock cycle ¢t and each assignment to the output bit y;, a linear
equation ¢ can be given such that the inner state S(t) generates output bit
ye iff S(t) is a solution to g.

2. The behaviour of the clock control depends on the inner state of the generator
in some linear way:.
For each clock cycle ¢ and each assignment to the clock control behaviour
&, a set @ of linear equations can be given such that the inner state S(t)
generates the clock control value & iff S(t) is a solution to Q.

3. The number of possible behaviours of the internal clock is small.

Given a generator that has properties 1-3, we can modify the adaptive bit guess-
ing attack as follows. Instead of guessing individual bits, for each clock cycle
t =0,1,..., we guess the associated clocking &. We add all linear equations
that follow from output bit y; and clock control & to the linear equation system
and check for consistency. The recursive method clock_guess in figure 1 gives the
general idea of the attack.

clock_guess(equ_system, clock_ctrl, t)

. Build all linear equations from properties 1 and 2.
. Add equations to equ-system.

. If (LCT(equ-system)=false):

Start backtracking.

te—t+1

LI (= L):

Do exhaustive search on remaining key space.
Start backtracking.

. For all possible clockings &;:
clock_guess(equ_system, &, t).

S © 00O T W N

—_

Fig. 1. Recursive method clock_guess

Observation: Note that clock_guess implements a depth search on a tree, where
each node of the tree contains a system of linear equations. Due to properties 1
and 2, all solutions to the equation system are keys that produce the bitstream
Yo, - - - , Y¢—1- Consequently, steps 7-8 are only executed for keys that produce the
bitstream o, ...,y —1. Since this property is only rarely met by random keys,
the number of calls to steps 7-8 amongst all calls to clock_guess should be a very
small integer. Thus, the average effort for steps 7-8 on a single call to clock_guess
is negligible.

Considering that step 1 can be executed by a table lookup on a small pre-
computed table, it becomes obvious that the running time of one execution of
clock_guess is dominated by steps 2 and 3. Here, the Gaussian algorithm for
linear equation systems can be deployed, yielding an overall effort in O(L?)
steps per call to clock_guess.

Alternating step generator, revisited: Applying the clock guessing attack against
the alternating step generator, we would first guess co, then ¢, cz and so on?.
Thus, we obtain two linear equations in each round (one for the clock control and
one for the output bit) and wait for contradictions to occur. Note that - if LFSR
A and B are much shorter than LFSR C - the first linear inconsistencies will
occur long before the bit ¢|c| has been guessed, making clock control guessing
much more efficient than a plain LCT attack.

4 On the efficiency of clock control guessing

Estimating the running time: As stated above, the running time of backtracking
attacks is not easily determined. An important role plays the depth d of the nodes
where the first inconsistent linear equation systems occur, and the probability
of this event. For more involved bitstream generators, these values are not easily
determined.

This is also true for the clock control guessing attack. A precise estimate of
the running time (i.e., the number of calls to clock_guess) is not possible without
paying close attention to the details of the cipher considered. The length of the
registers, the sparseness of the feedback polynomials, the positions of the output
and clock control bits and the choice of the output and clock control function
all determine the efficiency of the attack.

We can, however, prove a general upper bound for the size of the search tree
considered. In order to do this, we assume that the generator meets the following
condition:

4. The number of initial states S(0) that are consistent with the first d output
bit (d < L) is approximately 2L—4.

Note that this condition is met by all properly designed bitstream generators,
since otherwise, correlation attacks are easily implemented. Now we can estimate
the maximum width of the search tree, using an elegant technique proposed by
Krause in [9]. First, we make some simple observations.

Observation 1: Consider a node v in the search tree at depth d. Such a node is
reached by a sequence cq, ¢y, - - ., cq—1 of guesses for the clock control behaviour.
It contains a system V of linear equations derived on the path from the root to
the node by using properties 1 and 2 of the generator. The set of solutions to V'
has the following properties:

a) All solutions to V' produce the clock control sequence cg,ci, .- ., Cq—1-
b) All solutions to V' produce the bitstream sequence yo, y1, - - -, Yd—1-
c) If V is consistent, there is at least one solution to V.

2 Note that for the alternating step generator, the clock control guessing attack is
identical to the adaptive bit guessing attack.

We say that the node v represents all inner states that are solutions to V,
and that v is consistent if V' is consistent. As a consequence of property a,
no two nodes at depth d represent the same inner state, since different nodes
imply different behaviours of the clock control. On the other hand, no node v
represents an inner state that is inconsistent with the output bits yg,...,¥4_1.
From property 4 of the generator, we know that there are approximately 27—¢
solutions in all of the nodes. Since by property c, there are no empty consistent
nodes, there can be at most 2/~¢ consistent nodes at depth d. For low values
of d, however, the number of consistent nodes is going to be a lot smaller since
each node represents a huge number of inner states.

Observation 2: On the other hand, the number of nodes in the tree at depth d
can never be larger than k%, where k is the number of possible behaviours of the
clock control. For small values of d, this estimate will usually be exact, while for
larger values of d, the actual tree contains a lot less nodes than indicated by this
number.

Width of the search tree: Observe that the function 207 is constantly decreasing
in d, while k7 is constantly increasing. Since the number of consistent nodes in
the tree is indeed upper bounded by both of these functions, the maximum
number of nodes at a given depth is upper bounded by min{2-=¢ k?}. If we
write k% = 21°8(k)d for convenience, the maximum number of nodes must be
smaller than 2" with w = L — d, yielding

Qw 210g(k)~(L—w)
w = log(k) - (L — w)

lo
w — 1os(k)
log(k) +1
Thus, the number of consistent nodes in the widest part of the search tree can
not exceed 2* with A\ = 101;)5@()]21- Note that this is not an asymptotical result;

it is perfectly valid to use concrete values for £ and L and to calculate the upper
bound.

Total running time: Now that we have obtained an upper bound on the width
of the search tree, the total running time is easily determined. Observing that

— there are at most two layers with width 2%, that

— all layers above those two have at most 2% consistent nodes amongst them,
and that

— all layers below those two have at most 2" consistent nodes amongst them,

we see that the tree has at most 4 - 2 consistent nodes. Observing further
that there must be less than k£ non-consistent nodes for each consistent node, we
obtain a maximum of 4-(k+1)-2% € O(2") recursive calls to method clock_guess.
Thus, remembering our observation from section 3, the overall running time must

be in the order of O(L? - 2 L) with A = lolgfk(fll.

Alternating step generator, concluded: Let us use our new result on the alter-
nating step generator. There are only two options for the clock control, yielding
log(k) = log(2) = 1 and thus w = L/2. Consequently, quite independent of the
choice of the individual parameters, any implementation of the alternating step
generator can be broken by a clock control guessing attack in O(L?-2°-51) steps,
yielding an absolute upper bound of 0.5L bit on the efficient key size of this kind
of generator. In particular, increasing the length of LFSR C' while decreasing
the lengths of LFSR B and C (as proposed in section 2) can not possibly in-
crease security beyond this point. Also note that depending on the choice of the
individual parameters, the attack may even be much more efficient.

5 Application: Attacking A5/1

Description of the cipher: A5/1 is the encryption algorithm used by the GSM
standard for mobile phones; it was described in [2]. The core building block is
a bitstream generator, consisting of three LFSR with a total length of 64 bit.
First, the output is generated as the sum (mod 2) of the least significant bits
of the three registers. Then the registers are clocked in a stop-and-go fashion
according to the following rule:

— Each register delivers one bit to the clock control. The position of the clock
control tap is fixed for each register.

— A register is clocked iff its clock control bit agrees with the majority of all
clock control bits.

Clock control guessing: As mentioned before, the clock control guessing attack
on A5/1 was discussed earlier by Zenner [14], Goli¢ [5], and Pornin and Stern
[11]. First observe that the A5/1 generator produces 1 output bit per master
clock cycle, and that there are 4 different behaviours of the clock control. Let
u1,u2 and ug denote the contents of the clock control bits for a given clock cycle.
Table 1 gives the dependency between uy, us, uz and the behaviour C of the clock
control. Note that equivalent linear equations are easily constructed. Thus, we

C | Equation
(011) U1 7& Uz = U3
(101) U1 7é u2 7é us
(110) U = U2 75 us

(111) U = U2 = U3
Table 1. Clock control and linear equations

see that the A5/1 algorithm meets all prerequisites for a successful clock control
guessing attack. We simply guess the behaviour of the clock control for each
output bit, derive the linear equations and check for consistency.

Upper bounding the running time: Applying our estimate technique to the A5/1,
we have to observe two facts:

1. The initial state is generated in such a way that only 2 - 264 states are in

fact possible. The impossible states can be excluded by a number of simple
linear equations (for details, see [4]). Thus, the efficient key length of the
inner state is only 64 + log(3) ~ 63.32 bit.

2. Furthermore, the first output bit is not yet dependent on the clock control.
Thus, the efficient key length of the inner state prior to any clock control
guessing is further reduced by 1 bit, yielding L ~ 62.32.

For each master clock cycle, 4 possible behaviours of the clock control are possi-
ble. Thus, k = 4 and log(k) = 2. Using the estimate from section 4, we conclude
that the search tree has a maximum width of 2(2/3)62:32 ry 941547 15 des,

This result coincides with the maximum number of end nodes as given by
Goli¢ in [5], derived from a more involved analysis. Also note that in the same
work, the average number of end nodes was estimated to be 24°"1, as was to be
expected. By paying close attention to important details of the generator such
as the position of the feedback taps or the length of the registers, an estimate
for the tree size can be derived that in most cases will be lower than the general
upper bound. Nonetheless, this upper bound gives a first indication of a cipher’s
strength by ruling out some weak ciphers without further effort.

Test run on a small version: In order to demonstrate the difference between the
proven upper bound and the actual running time, we have implemented a 40-bit
version of the A5/1, featuring the details given in table 2.

LFSR | length feedback polynomial clock control tap
A 11 T+ 241 a¢ (in aop,...,aio)
B 14 e+ +1 b7 (in bo, ..., b13)
C 15 P4+t 2241 cs (in co,. .., c14)

Table 2. 40-bit version of the A5/1 generator

Again, we observe that the first output bit is not yet dependent on the clock
control, yielding 2%° candidates for the initial state or an efficient key length of
L = 39 bit.? Thus, we would expect the bounding functions to be 47 and 239—9,
yielding a maximum search tree width of 226,

An overall of 120 experiments was conducted, and the results are shown
in figure 2. The figure shows the average width of the search trees that were
found in the experiments. It also gives the bounding functions 4¢ and 239~ for
convenience. The following observations can be made:

3 For simplicity’s sake, we ignore the fact that only % - 210

possible.

inner states are actually

width(d)

30 39-d d
2 2 4
20—
2
10+
2
depth
T T T T T T T —d
5 10 15 20 25 30 35 40

Fig. 2. Width of search tree for small A5/1 generator

— The actual tree width at depth d matches the predicted value of min(44,239~4)
surprisingly well.

— In the widest part of the tree (d = 14), the actual number of nodes is smaller
than the predicted upper bound, which was to be expected.

— In the lowest part of the tree (d > 34), the actual number of nodes is larger
than predicted by the function 23°~¢. This is due to the fact that for the
A5/1 generator, there is a chance that several inner states map onto the
same output sequence, i.e., assumption 4 does not hold for high values of d.
This, however, does not affect the performance of the algorithm, since the
running time is almost exclusively determined by the widest part of the tree.

In our experiments, we found an average of 1.758 inner states that produce
the same output. Judging from the empirical data as given in table 3, it seems
that the probability of a bitstream (generated from a random seed) having z
generating keys is approximately 27% for small values of z. Whether or not this
assumption is correct and whether or not it also holds for the full version of
A5/1 remains an open problem.

equivalent keys | 1 2 3 4 5 6 7
frequency | 64 33 17 2 3 - 1
Table 3. Frequency of equivalent keys

6 Other Generators

In this section, we will review some generators from literature, pointing out
some dos and don’ts when using the above attack and the associated technique
for upper bounding the efficient key length.

Stop-and-go generator: The stop-and-go generator [1] consists of two LFSR C
and A, where the output bit is taken as the least significant bit of LFSR A.
While LFSR C is clocked regularly and outputs ¢y, ¢s, ..., LFSR A is clocked iff
¢t = 1. As a consequence, the output sequence y has a probability of 3/4 that
the condition y; = y;—1 holds. Thus, certain output sequence prefixes are much
more likely than others, contradicting property 4. Thus, even though the clock
control guessing attack can be implemented against the stop-and-go generator,
the estimate can not be used without further thought.

Step1-step2 generator: The stepl-step2 generator [6] modifies the stop-and-go
generator in that depending on bit ¢;, the LFSR A is stepped once (¢; = 0)
or twice (¢; = 1). In this case, the resulting bit sequence does not display the
anomaly of the stop-and-go generator and meets property 4. Since the behaviour
of the clock control can be described as for the alternating step generator and
since there are only 2 possible behaviours of the clock control, we obtain an
upper bound of 20°% for the efficient key length of the stepl-step2 generator,
independent of the individual parameters.

Cascading generator: Many clock-controlled generators (such as stop-and-go
generator and stepl-step2 generator) can be generalised into a cascade by using
more than just 2 LFSR. Typically, the output bit of LFSR i controls the clock-
ing of LFSR i + 1 and is also added to the output of LFSR i + 1 modulo 2. In
[6], Gollmann and Chambers describe some possible constructions for cascade
generators obtaining good statistical bitstream properties.

If the basic clock-control mechanism (e.g., stop-and-go) meets conditions 1-
3, then the associated cascade generator can be attacked using clock control
guessing. After making sure that the resulting bitstream meets assumption 4,
we can use the above technique to derive an upper bound on the effective key
length. Given a cascade with s LFSR and a total bit length of L, we see that
there are k = 2°! possible behaviours for the clock control. Thus, we have
log(k) = s — 1 and the efficient key length is at most =1 L.

Note that this is not identical to the naive divide-and-conquer attack of
guessing the contents of the uppermost s — 1 registers and deriving the content
of the lowest LFSR from the bitstream. This naive attack has computational
cost in the order of O(2F~!), where [is the length of the lowest LFSR. If | < £,
the clock control guessing attack will usually be more efficient than the simple
divide-and-conquer attack.

Shrinking generator: The shrinking generator was proposed in [3]. It consists of
two LFSR C and A that are clocked simultaneously. For each clock ¢ , if the

output bit ¢; of LFSR C' equals 1, the output bit a; of LFSR A is used as output
bit. Otherwise, a; is discarded.

Note that this generator can be viewed as a clock-controlled generator, where
register A is clocked once with probability 1/2, twice with probability 1/4 a.s.o.
before producing one bit of output. Thus, the number of possible clock control
behaviours is rather large (up to |C| different possibilities), the property 3 is
violated and the attack is not applicable in a straightforward manner. In this
case, the adaptive bit guessing attack seems to obtain better results®.

7 Conclusions

We have presented the cryptanalytic technique of clock control guessing which
is applicable against a large number of clock-controlled bitstream generators.
We have also given a general technique for upper bounding the efficiency of our
attack, yielding an efficient key length of at most lolg(gk(_"c_)l)L bit, where k is the
number of possible behaviours for the clock control.

Most clock-controlled generators proposed in the literature have rather sim-
plistic clock control rules, often yielding £ = 2 and thus cutting the efficient key
length down to L/2 even without more detailed analysis. If this is not acceptable,
any of the following design changes increases resistance against our attack:

— Increase the number of possible behaviours for the clock control. This way,
the search tree expands rather rapidly, making the search more difficult.

— Choose a non-linear function for the clock control.

— Choose a non-linear function for the keybit extraction.

A generic example of a clock-controlled bitstream generator that can be designed
to follow all of those design criteria is the LILI generator [12]. The generator
consists of two LFSR C and A, where C determines the clock control and A the
output. The clock control ¢; is determined from the inner state of LFSR C' by a
bijective function f. : {0,1}™ — {1,...,2™}, and the output bit y; is computed
from the inner state of LFSR A using a Boolean function fq: {0,1}" — {0, 1}.
If the values m and n are chosen large enough and if the functions f. and fy are
non-linear, the generator should be safe from clock control guessing attacks®.

References

1. T. Beth and F. Piper. The stop-and-go generator. In T. Beth, N. Cot, and
I. Ingemarsson, editors, Advances in Cryptology - Eurocrypt ’84, volume 209 of
LNCS, pages 88-92. Springer, 1985.

* The same observation holds for the self-shrinking generator, presented in [10].

5 The mapping fe(x1,..., %) = 1+ 21 + 222 + ...+ 281z that was proposed by the
authors is easily modelled using linear equations. This should not be a problem, as
long as the other design criteria are met. For paranoia’s sake, however, a non-linear
permutation might be considered instead.

10.

11.

12.

13.

14.

15.

. M. Briceno, I. Goldberg, and D. Wagner. A pedagogical implementation of A5/1.

http://www.scard.org/gsm/a51.html.

D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D.R.
Stinson, editor, Advances in Cryptology - Eurocrypto ’93, volume 773 of LNCS,
pages 22-39, Berlin, 1993. Springer.

. J.D. Goli¢. Cryptanalysis of alleged Ab stream cipher. In W. Fumy, editor, Ad-

vances in Cryptology - Eurocrypt ’97, volume 1233 of LNCS, pages 239-255, Berlin,
1997. Springer.

J.D. Golié¢. Cryptanalysis of three mutually clock-controlled stop/go shift registers.
IEEE Trans. Inf. Theory, 46(3):1081-1090, May 2000.

D. Gollmann and W. Chambers. Clock-controlled shift registers: A review. IEEE
J. Selected Areas Comm., 7(4):525-533, May 1989.

S. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills (CA),
revised edition, 1982.

C. Giinther. Alternating step generators controlled by de Bruijn sequences. In
D. Chaum and W. Price, editors, Advances in Cryptology - Eurocrypt 87, volume
304 of LNCS, pages 88-92. Springer, 1988.

M. Krause. BDD-based cryptanalysis of keystream generators. In L. Knudsen,
editor, Advances in Cryptology - Eurocrypt ‘02, LNCS. Springer, 2002.

W. Meier and O. Staffelbach. The self-shrinking generator. In A. De Santis,
editor, Advances in Cryptology - Eurocrypt ’94, volume 950 of LNCS, pages 205—
214, Berlin, 1995. Springer.

T. Pornin and J. Stern. Software-hardware trade-offs: Application to A5/1 crypt-
analysis. In C. Ko¢ and C. Paar, editors, Proc. CHES 2000, volume 1965 of LNCS,
pages 318-327. Springer, 2000.

L. Simpson, E. Dawson, J. Goli¢c, and W. Millan. LILI keystream generator. In
D. Stinson and S. Tavares, editors, Proc. SAC 2000, volume 2012 of LNCS, pages
248-261. Springer, 2001.

K. Zeng, C. Yang, and Y. Rao. On the linear consistency test (LCT) in cryptanal-
ysis with applications. In G. Brassard, editor, Advances in Cryptology - Crypto
’89, volume 435 of LNCS, pages 164-174. Springer, 1990.

E. Zenner. Kryptographische Protokolle im GSM-Standard - Beschreibung und
Kryptanalyse. Master’s thesis, University of Mannheim, 1999.

E. Zenner, M. Krause, and S. Lucks. Improved cryptanalysis of the self-shrinking
generator. In V. Varadharajan and Y. Mu, editors, Proc. ACISP ’01, volume 2119
of LNCS, pages 21-35. Springer, 2001.

