Improved Cryptanalysis of the
Self-Shrinking Generator

Erik Zenner *, Matthias Krause, Stefan Lucks **

Theoretische Informatik
University of Mannheim (Germany)
e-mail: {zenner ,krause, lucks}@th .informatik.uni-mannheim.de

Abstract. We propose a new attack on the self-shrinking generator [8].
The attack is based on a backtracking algorithm and will reconstruct
the key from a short sequence of known keystream bits. We give both
mathematical and empirical evidence for the effectiveness of this attack.
The algorithm takes at most O(2°-°*%) steps, where L is the key length.
Thus, our attack is more efficient than previously known key reconstruc-
tion algorithms against the self-shrinking generator that operate on short
keystream sequences.

1 Introduction

The self-shrinking generator [8] is a keystream generator for the use as
a stream cipher. It is based on the shrinking principle [2] and has re-
markably low hardware requirements. So far, it has shown considerable
resistance against cryptanalysis.

In cryptanalysis of a keystream generator, the attacker is assumed to
know a segment of the keystream. The system is considered broken if the
attacker can predict the subsequent bits of the keystream with success
probability higher than pure guessing. One way to achieve this goal is to
reconstruct the initial state of the generator, which allows prediction of
the remaining keystream sequence with probability 1.

In this paper, we propose a new attack against the self-shrinking
generator. It reconstructs the initial state of the generator from a short
keystream sequence, requiring O(2%-6%41) computational steps. The fastest
attack previously known that operates on a short keystream sequence [8]
requires O(2°7°L) steps. The only attack that has the potential to achieve
a better running time [9] needs a much longer keystream sequence.

The paper is organised as follows: In section 2, we give an introduc-
tion to both the shrinking and the self-shrinking generator, the former

* Supported by the LGF Baden-Wiirttemberg
** Supported by DFG grant Kr 1521/3-1

providing the working principle for the latter. Section 3 surveys some of
the previous work on cryptanalysis of the self-shrinking generator.

Sections 4-6 describe our attack and its properties. After giving a
description of the algorithm in section 4, we prove the running time to be
upper bounded by O(2°6%4L) steps in section 5. Section 6 provides some
supplementary experimental results.

We conclude in section 7 by giving some design recommendations that
help in strengthening a self-shrinking generator against our attack.

2 Description of the Cipher

2.1 The Shrinking Generator

In [2, 6], Coppersmith, Krawczyk and Mansour introduced a new pseudo-
random keystream generator called the shrinking generator. It consists
of two linear feedback shift registers (LFSR) A and S, ! generating the
m-sequences (a;);>o (denoted as A-sequence) and (s;);>o (denoted as S-
sequence), respectively. The keystream sequence (z;);>o is constructed
from these two sequences according to the following selection rule: For
every clock ¢, consider the selection bit s;. If s; = 1, output a;. Other-
wise, discard both s; and a;.

This way, a nonlinear keystream is generated. Even a cryptanalyst
who knows part of the keystream sequence can not tell easily which z;
corresponds to which a;, since the length of the gaps (i.e., the number of
a; that have been discarded) is unknown.

In [2], the shrinking generator is shown to have good algebraic and
statistical properties. For a generalisation of some of these results, refer to
[10]. Also in [2], a number of algebraic attacks that reconstruct the initial
state of A and S are given. Note that all of them require exponential
running time in the length |S| of LFSR S.

A probabilistic correlation attack against the shrinking generator is
discussed in [4,11]. The authors give both mathematical and empirical
treatment of the necessary computation. The resulting attack reconstructs
the initial state of A, requiring an exponential running time in the length
|A| of LFSR A. Note that in order to reconstruct the initial state of .S,
another search is required.

! The shrinking principle can be applied to any two binary symmetric sources; it is not
restricted to LESR. All of the algebraic results on the shrinking generator, however,
are based on the assumption that LFSR are used as building blocks.

Shrinking Generator Self-Shrinking Generator

3 clocki ‘ clocki

Fig. 1. The Shrinking Generators

As a consequence, a shrinking generator with |A| &~ |S| still remains
to be broken by an algorithm that is significantly more effective than the
one presented in [2] (for a description, see section 4.1).

2.2 The Self-Shrinking Generator

The self-shrinking generator is a modified version of the shrinking
generator and was first presented by Meier and Staffelbach in [8].

The self-shrinking generator requires only one LFSR A, whose length
will be denoted by L. The LFSR generates an m-sequence (a;);>0 in the
usual way. The selection rule is the same as for the shrinking generator,
using the even bits ag,as,... as S-Bits and the odd bits a1,as,... as
A-Bits in the above sense. Thus, the self-shrinking rule requires a tuple
(a2i,a2;+1) as input and outputs ag; 1 iff ag; = 1.

The close relationship between shrinking and self-shrinking generator
is shown in figure 1. In [8], an algorithm is given that transforms an L-
bit self-shrinking generator into a 2L-bit shrinking generator. It is also
shown that a shrinking generator with register lengths |A| and |S| has an
equivalent self-shrinking generator of length L = 2- (|A| + |S|). Notwith-
standing this similarity, the self-shrinking generator has shown even more
resistance to cryptanalysis than the shrinking generator. The next section
gives a short description of the most efficient key reconstruction attacks
that have been proposed in recent years.

3 Previous Work on Cryptanalysis

First, note that the attacks that have been proposed against the shrinking
generator can not be transferred to its self-shrinking counterpart. The
shrinking generator is best broken by attacking either LFSR A or S, thus

effectively halving the key length. The self-shrinking generator, however,
has molded both registers into an inseparable unit, namely a single LFSR.
For this reason, “separation attacks” can not be employed without major
modifications.

3.1 Period and Linear Complexity

The period IT of a keystream sequence generated by a self-shrinking gen-
erator was proven to be 20/21 < [T < 25=! in [8]. Experimental data
seems to indicate that the period always takes the maximum possible
value for L > 3.

It was also shown that the linear complexity C' is always greater than
IT/2. On the other hand, C was proven in [1] to be at most 21 — (L —2).
If IT = 217! we have C € ©(2171).

As a consequence, a LFSR with length equal to C' can be constructed
from about 2% keystream bits in O(22/~2) computational steps, using the
Berlekamp-Massey algorithm [7]. For realistic generator sizes of L > 100,
this attack is thus computationally unfeasible.

3.2 Attacks using short keystream sequences

Even if the feedback logic of the LFSR is not known, there is a simple
way of reducing the key space [8]. Consider the first two bits (ag, a1) of
the LFSR (unknown) and the first bit zy of the keystream (known). Then
there are only three out of four possible combinations (ag,aq) that are
consistent with the keystream, since (ap,a1) = (1,2p) is an immediate
contradiction. The same rule can be applied for the next bit pair (a9, as),
and so on. Consequently, only

3L/2 _ o(l0g>(3)/2)-L _ 90.79L
possible initial values for the LFSR. A consistent with the keystream.
The running time that is needed to search through the reduced key

space can be further reduced on average by considering the likelihood of
the keys. Note that the following holds:

Prl(ap, a1) = (0,0)|20] =1/4
Prl(ag,a1) = (0,1)|20] =1/4
Prl(ag, a1) = (1, 20)|20] = 1/2.

Thus, the entropy of the bit pair is

H = —(1/4)log(1/4) — (1/4) log(1/4) — (1/2) log(1/2) = 3/2.

The total entropy of an initial state consisting of L/2 such pairs is thus
20-75L - At the same time, this is the effort for searching the key space
if the cryptanalyst starts with the most probable keys. Surprisingly, this
is still the most efficient reconstruction algorithm using short keystream
sequences that has been published.

3.3 Attack using long keystream sequences

In [9], Mihaljevi¢ presented a faster attack that needs, however, a longer
part of keystream sequence. Let the length of this known part be denoted
by N. Then the attacker assumes that an [-bit section of the keystream
has been generated by the current inner state of the LEFSR. Consequently,
[out of the L/2 even bits of A must be equal to 1. The attacker guesses
these bits and checks whether or not this guess can be correct, iterating
over all [-bit sections of the keystream. It is shown that cryptanalysis is
successful with high probability after 2~ steps.

Since this procedure only makes sense for L/4 <[< L/2, the running
time can vary from 2%°% in the very best case to 2°">* under more un-
favourable circumstances. The efficiency of the attack depends mainly on
the number of keystream bits that are available, since the value | must
be chosen such that the following inequality holds:

-1
N>l-2L/2-<L/2>
I

In order to get a feeling for the number of bits required for this attack,
table 1 gives some examples of required bitstream lengths for different
register sizes L. The number of bits is given in logarithmic form in order
to enhance readability. We concentrate on three cases:

— In order to beat the best key reconstruction algorithm described above,
we need [= 0.25L, yielding a running time of 207" steps.

— Improving the running time to 20-694% (which is the performance of
the algorithm to be presented in section 4) requires [= 0.306 L.

— In order to achieve the best possible running time of 205" steps,

we need [= 0.5L. Note that for realistic register lengths, the sheer

amount of required data (namely, N > % oL/ 2) should make such an

attack a mere theoretical possibility.

value I: 0.25L 0.306 0.50L
90-75L 50-691L 905

Time:
Bits :
L =120 28.19 210.17 265.91

L =160 28.81 211.37 286.32

L = 200 29.30 213.07 2106.64
L = 240 29.69 214.03 2126.91
L = 280 210.02 214.94 2147.13
L = 320 210.31 215.81 2167.32

Table 1. Number N of keystream bits required for Mihaljevié¢ attack

4 The Backtracking Algorithm

The goal of our cryptanalysis is the reconstruction of an inner state of
the generator that is consistent with the keystream. We assume thus that
a short keystream sequence of length ~ L bits is known to the attacker.

We also assume that the feedback polynomial of the generator is
known. Note that none of the attacks given in section 3.2 makes use of the
feedback logic. It can be expected that the use of additional information
should lead to a more efficient attack.

4.1 Basic Idea: Attacking the Shrinking Generator

First, consider cryptanalysis of the shrinking generator. If the feedback
polynomials are known, an obvious way of reconstructing the inner states
is as follows.

1. Guess the inner state of the control register S. From this, we can
determine as many bits of the S-sequence as required.

2. Knowing the S-Sequence and part of the keystream sequence, we can
reconstruct single bits of the A-Sequence.

3. Each known bit of the A-sequence gives a linear equation. If we can
find |A| linear independent equations, we can solve the system and
thus reconstruct the inner state of register A.

4. We run the shrinking generator, using the reconstructed inner states
for A and S. If the keystream sequence thus generated matches the
known keystream sequence in the first |A| + |S|+ € positions (where €
is a security margin), we have found with high probability the correct
inner state.

The running time of this attack (that was also presented in [2]) is obvi-
ously upper bounded by O(|A[® - 2!%1), since there are at most 25/ — 1

inner states of register S and the solving of a system of |A| linear equa-
tions takes at most |A[|> steps.

4.2 Applying the Idea to the Self-Shrinking Generator

The principle of guessing only the S-Bits and deriving the A-Bits by
solving a system of linear equations can be applied to the self-shrinking
generator as well. It is, however, not as straightforward as with the
shrinking generator, since guessing all S-Bits in the initial state (i.e.,
all even bits) will not enable the cryptanalyst to compute the rest of
the S-sequence (unless the generator has a non-primitive characteristic
polynomial). Thus, we will guess the even bits one at a time, using a
backtracking approach similar to the procedure proposed by Goli¢ in [3]
for cryptanalysis of the A5/1 stream cipher.

Before we describe the details of the attack, we give the following
property of the key (i.e. the initial state of the LFSR)?:

Proposition 1. For each key K = (ay,...,ar—1) with ay = 0, there
exists an equivalent key K' = (ag,...,a}) with af = 1.

Proof. Consider the sequence (a;);>0 generated by the inner state K. Sup-
pose the first ’1’ on an even position appears in position 2k. Then clock the

register by 2k steps, deriving the new inner state K’ = (agg, ..., a2k+1—1)-
Obviously, both inner states yield the same keystream sequence, since in
transforming K to K', no output is generated. O

It is thus safe to assume that ap = 1 and a; = 2y. This way, we will
reconstruct a key that is not necessarily equal to the original key, but it
is equivalent in a sense that it will create the same keystream sequence.

From now on, we will have to guess the even bits of the sequence
(a;)i>0. This way, we obtain two different types of equations as follows:

— Every guess can be represented by a linear equation ag; = b;. These
equations will be referred to as being of type 1.

— If ap; = 1, we obtain a second equation of the type as;+1 = 2zj, where
j= 22:0 asc. These equations will be denoted as being of type 2.

This approach will be implemented using a tree of guesses as shown in
figure 2.

2 The same property also holds for the shrinking generator. In this context, it was
discussed in [11].

Fig. 2. The Tree of Guesses

As long as i < |L/2| — 1, the development of the tree is straightfor-
ward. We get exactly two new equations whenever we follow a '1’ branch
and exactly one new equation when following a ’0’ branch. All of these
equations are linearly independent, since no variable a; appears more
than once. Thus, we get a complete binary tree with height [L/2] — 1.

After that point, however, the tree becomes irregular, since the in-
dices of the new equations become larger than L — 1. Thus, the feedback
recurrence must be used to convert the simple equations into a repre-
sentation using only ap,...,ar—1. Depending on the equations that are
already known, there is an increasing probability that the new equations
are linearly dependent of the earlier ones. That means they are either
useless (in case they are consistent with the existing equation system) or
lead to a contradiction. In the latter case, we have chosen a path in the
tree that is not consistent with the known keystream sequence. We can
thus ignore the current branch and start backtracking.

If we find a branch that ultimately gives us L linearly independent
equations, we can solve the equation system and derive a key candi-
date. This candidate is evaluated by running the self-shrinking generator
with this initial value, generating a candidate keystream of length L + €
(where € is a small number of additional bits). We compare the candidate
keystream with the known keystream segment. If they match, the key
candidate is equivalent to the original key with high probability.

5 Upper Bounding the Running Time

In this section, we establish an asymptotical upper bound on the running
time of our algorithm. For this purpose, we first give an upper bound Cf,

for the number of leaves in the tree of guesses (sections 5.1-5.3). Then,
in section 5.4 we derive an upper bound for the number Ny, of nodes in
the tree and conclude that the total running time of the algorithm can
be upper bounded by O(L* - 206945,

5.1 Well-formed vs. malformed trees

Let Ty denote a tree of guesses such that £ linearly independent equations
are still missing in the root to allow the solving of the equation system.
Note that for the search tree given in section 4, we have ¢ = L — 2.

In order to formally prove the maximum number C; of leaves in Ty,
we label the nodes as follows: Each node is labelled by the number of
linearly independent equations still needed in order to solve the equation
system. The root is thus labelled by £. For technical reasons, we allow a
leaf of the tree to take both the labels 0 and —1, both meaning that the
system is completely specified.

Assumption 1 For the following average case analysis, we assume that
an equation that is linearly dependent of its predecessors will lead to a
contradiction with probability 1/2.

This assumption is reasonable, since the bits ag; and ag;41 are generated
by an m-LFSR, meaning that a variable takes values 0 and 1 with (almost)
equal probability.

Now consider an arbitrary node V of depth ¢ — 1, ¢ > 1, and its two
children, Vy and V; (reached by guessing ag; = 0 or ag; = 1, resp.) Let V'
be labelled by j. The labelling of the child nodes depends on whether ao;
and/or ag;y1 are linearly dependent of the previous equations or not:

A) Both are independent. In this case, no contradiction occurs. The left
child is labelled 5 — 2 and the right child is labelled j — 1.

j-2
Prob=1

j-1

B) ag; is independent, ag; 1 is not. Both children are labelled j — 1. How-
ever, a contradiction occurs in V) with probability of 1/2.

Prob = 1/2 Prob =172

C) a9; is dependent, as;y1 is not. The left child is labelled j — 1, while
the right child is labelled j. However, a contradiction occurs either in
V1 or in Vy, with equal probability.

7 N

-1
Prob = 1/2 Prob =172

D) Both are dependent. In this case, both child nodes have the same
label as the parent node. Due to the linear dependency of as; there
occurs a contradiction in either Vi or Vj, with equal probability. In
addition, there is an additional probability of 1/2 that ag;41 leads to
a contradiction in Vj.

' o
Va N N 7
i i

Prob = 1/4 Prob =172 Prob = 1/4

Definition 1. A well-formed tree T} is a binary tree where only branch-
ings of type A occur, i.e., for every node that is not a leaf, the following
rule holds: If the label of the node is j, then the label of its left child is
7 — 2 and the label of its right child is j — 1.

A malformed tree is an arbitrary tree of guesses that contains at least
one branching of a type B, C or D.

Essentially, the notion of a well-formed tree describes the tree of
guesses under the assumption that all linear equations (of both type 1
and 2) are linearly independent. Note that such a tree is highly unlikely
for large £. Nonetheless, the well-formed tree plays an important role in
establishing the overall number of leaves for the tree of guesses. We pro-
ceed now to prove that on average, a malformed tree has at most the
same number of leaves as a well-formed tree.

Theorem 1. Let C; denote the number of leaves of a well-formed tree
T;. Let Cp denote the mazimum number of leaves in a tree Ty that may
or may not be malformed. Then in the average case, Cy < C; holds.

Proof. The proof is by induction. Obviously, the inequality holds for C'"_;
and (Y, since trees T_1 and Ty consist only of a root without a child.

Thus, C_1 =C*; =1and Cy =Cj = 1.
Now consider Cy, £ > 1. First note that since the theorem holds for Cy_4
and Cy_o, it follows that

Cor1+Cr o <Cj 1 +C; 5 =0CY. (1)
Also note that even in the worst possible branching case, we have
Cp<2-Cpy. (2)
for all /. Using these two facts, we can prove an upper bound for C; by
distinguishing the following cases (identical to the ones given above):

A) Let the tree Tj' be composed of a subtree with at most Cy_y leaves
and a subtree with at most Cy_; leaves. It follows for the maximum
number Cj‘ of such a tree that

CiH<Cpy+Cpy <Cy.

B) The tree TEB is composed of either one or two subtrees, having at most
Cy_1 leaves each. Consequently, CP < 1/2- Cy_; + Cy_1. Using (2),
we have

CP <Cia+Cpy <Cj.

C) The tree TKC is composed of only one subtree with at most Cy_1 or Cy
leaves, resp. (with equal probability). We have Cf' < 1/2-(Cy_1 +Cy),
and using (2), derive

1
cy < 5(20472 +2Cp 1) =Cp 2+ Cp 1 <Cy.

D) The tree TP has one of the forms given in case D. Then, for the
average number Cf of leaves in this tree, we have CED < % - (Y. Using

(2) repeatedly, we get
D _ 93 1 .
Cy < 3 Coo1=Cp1 + 504—1 <Cp1 +Cpe < (.

Since Cp = max(Cé“, CB,Cf,CP), we have C, < Cj. O

5.2 Size of a well-formed tree

We have shown that the number Cj of leaves in an arbitrary tree of guesses
is on average not bigger than the number Cj of leaves in a well-formed
tree. In the next section, we will prove an estimate for C; and thus an
upper bound for C.

Theorem 2. Let C denote the size of a well-formed tree T; . Then we
have af < C; < %az for oll L > 1, where a = % r 06942419

Proof. Note that for all £ > —1, Cj satisfies the recursion Cj, , = Cj, | +
C; with C*, = Cj = L.

Let a be the unique positive solution of 22 = z + 1, i.e. a =
this case, the function F(£) = a’ also satisfies the recursion F(£ + 2) =
F({+ 1)+ F(¢) for all £ > 0. Since Cy = F(0) and C; = 2F(1), we have
aegnggag for all £ > 0. O

1+2—\/‘F’. In

Note that % ~ 1.236068. Thus, we have found the upper bound of the
average search tree to be Cj < 2. 206916 20.6946+0.306,

5.3 Worst case considerations

The above result can be applied directly to the tree of guesses in section 4.
Remembering that such a search tree actually has a root labelled ¢ = L—2,
we can upper bound the average number of leaves by C}, < 20-694L—0.918

This upper bound seems to holds even for the worst case, provided
that L is large enough. Remember that assumption 1 stated that in case of
a linearly dependent equation, contradiction occurs with probability 1/2.
Now remember from section 4.2 that linearly dependent equations do not
occur before depth [£ | is reached. This, in turn, means that for large L,
there exists a large number of nodes labelled j for each j < L — |£]. We
can thus apply the law of large numbers, stating that the actual number
of contradictions is very close to the expected number of contradictions.
Thus, the number of leaves should be close to the above bound not only
for the average case, but for almost any tree of guesses.

In order to give some more weight to this rather informal argument,
we will provide some empirical evidence for this conjecture in section 6.

5.4 Running time of the algorithm

The asymptotically most expensive single step of the backtracking algo-
rithm presented in section 4 is the testing of the linear dependency of new
equations. This operation in itself takes O(L?) elementary steps and has
to be repeated once or twice in each node of the tree of guesses.

Thus, we have to establish an upper bound for the maximum number
of nodes in the tree. Since the tree will be malformed, it contains nodes
that have only one child. It is thus impossible to upper bound the number
of nodes by 2-Cf, — 1, as could be done for a proper binary tree. We can,
however, prove that the maximum depth of the search tree is L — 1.

Proposition 2. If the linear recurrent sequence (a;)i>o is of mazimum
length, then the tree has mazimum height of L — 1.3

Proof. In any node of depth i, we have exactly 7 + 1 equations of type 1
at our disposal (and a varying number of equations of type 2). Thus, at
depth L — 1, we have exactly L such equations, namely ag, as, ..., a2r—2.
By a theorem on maximum length linear recurrent sequences (see e.g. [5],
p. 76), there exists a k such that the following holds:

(ak, k415 aprr—1) = (ao,a2,...,a21, 2)
Since ag,...,ar+1,—1 must be linearly independent, the same holds for
ag, a2, - .., aar,—2. Consequently, we have L linearly independent equations

of type 1 in any node of depth L — 1, allowing us to solve the system and
derive a key candidate. Thus, no node of the tree will have depth > L. O

We can use this fact to upper bound the number of nodes. Consider the
largest binary tree (w.r.t. the number of nodes) with height L — 1 and C7,
leaves. This tree is a complete binary tree from depth 0 to p = |log Cp|.
From depth p + 1 to depth L — 1, the tree has constant width of Cf,.

Let N; denote the number of nodes in a search tree. It follows that
Ny, is at most the size of this worst possible tree.

Ny < (2P -1+ (L-p-1)-Cp

Note that both 2P*! and Cp, are in O(CL). Ignoring all constant sum-
mands and factors to Cr,, we obtain:

N € O((L—-p)-Cr)
— 0(0.306L . 20.694L70.918)
= 0(0.162L - 20-991L)

Remembering that in each node, a linear equation has to be inserted into
an equation system, and ignoring constant factors again, we derive a total
asymptotic running time in O(L* - 206941,

% Note that this proposition only holds for maximum length sequences. The use of
shorter sequences, however, would be a breach of elementary design principles, since
it would facilitate a number of other attacks. It does not seem to increase resistance
against our attack either, it just makes the proof harder.

Number of leaves Number of nodes
L Ca.vg Cmaz Obound Navg Nma.z Nbound
3 21.00 21.00 21.16 21.58 21.58 21.04
4 9155 9158 91.86 92.57 92.81 92:15
5 22.29 22.58 22.55 23.28 23.46 23.17
6 22.85 23.17 23.25 24.21 24.64 24.12
7 9353 38T 5301 9402 9513 9501
8 94.23 94.64 94.63 95.61 95.93 95.93
9 94.88 95:29 95.33 96-35 96.79 96.79
10 95.53 95.88 96.02 97.05 97.55 97.64
11 26.22 26.57 26.72 27.75 28.24 28.47
192 96.87 9726 9741 98.46 98.89 99.29
13 97-56 97-92 98:10 99.16 99.73 910.10
14 98:25 98-56 98-80 99.85 910.20 910.90
15 28.92 29.2.5 29.49 210.56 211.26 211.69
16 99.61 99-90 910.19 911.25 9l1.64 912.48

Table 2. Empirical Results

6 Experimental Results

6.1 Results on the number of leaves

In the section 5, we have proven the number of leaves in the search tree to
be upper bounded by 20-694L=0918 i the average case. This result leaves
a number of interesting questions open: Since we have only derived an
upper bound: How close is this value to the average number of leaves
that do occur in an actual search?* And what about the conjecture in
section 5.37 Is C'p, also an upper bound for the worst case, for large L?

In order to answer those questions, the key reconstruction algorithm
from section 4 has been implemented and tested against all keys and all
primitive polynomials for L = 3,...,16. The main results of this simula-
tion are given in the left half of table 2. Here, Cy,,y and Cy,q; denote the
average and maximum number of leaves encountered in the experiments.
Chound = 20-694L=0918 denotes the upper bound as calculated in section
5. For ease of comparison, all values are given in logarithmical notation.

First observe that values Cy,,y and Cjq, are very close; they differ by
a factor ¢ with 1 < ¢ < 1.33. Of course, this may or may not hold for
larger values of L, but for small L, the maximum number of leaves does
not stray very far from the average.

* We must take care not to confuse the average case of the analysis with the average
number of leaves in the search tree; they are quite different mathematical objects.

Also observe that for L > 8, Cj,una seems to be a proper upper bound
not only for the average case, but also for the maximum number of leaves
in the search tree. Note especially that for L > 8, the gap between Cjqz
and Choyng seems to be widening with increasing L. Nonetheless, addi-
tional empirical or mathematical evidence for larger L might be necessary
before our conjecture from section 5.3 can be considered confirmed.

6.2 Results on the number of nodes

In the right half of the table, we give the results on the number of nodes.
Again, Nyyg and Nyq, denote the average and maximum values encoun-
tered in the experiments, while Nypyng = 0.162L - 206941 denotes the
mathematical bound as given in section 5.4.

It seems that for L > 7, Npouna is an upper bound for the number
of nodes in the worst possible case. As with the results on the number
of leaves, the gap between Np,q; and Npgyng seems to be widening with
increasing L, but again, more data for larger L would be helpful. We also
note that Ngy»g and Npyynq are very close to each other.

An interesting side observation is that Nyyg = 2 - Choynd, i-e. that the
average number of nodes appears to be almost exactly twice the mathe-
matical upper bound for the number of leaves as derived in section 5.3.
This is not apparent from the mathematical analysis in section 5 and may
thus be an interesting starting point for future research.

7 Design Recommendations

The effective key size against our attack is less than 70% of the key length.
For a register length of 120 bit, the backtracking attack runs in O(2%3)
steps and is probably not feasible in today’s practice. Our attack, how-
ever, is easily parallelised, allowing an adversary to use as many parallel
processors at once as he can afford. Since each processor can operate on
its own segment of the tree (without any need of communication with the
other ones), k processors can reduce the running time by a factor of k.
Thus, a generator using a shorter register is in real danger of being com-
promised. We conclude that the minimum length of a self-shrinking
generator should exceed 120 bit.

Note that our attack relies on the feedback logic of the register to
be known. If it is not, the attack has to be repeated for all primitive
feedback polynomials of length L, yielding an additional working fac-
tor of ¢(2" — 1)/L. Security of the self-shrinking generator can thus be

increased significantly by following the proposal given in [2, 8]: Use a pro-
grammable feedback logic and make the actual feedback polynomial
a part of the key.

Finally, observe that the use of sparse feedback polynomials makes
our attack slightly more effective. If the more significant bits depend on
only a few of the less significant bits, the probability of linear dependent
equations increases, yielding a tree of guesses that is more slender than
the average case tree considered above. However, as stated in section 6.2,
the sizes of worst case and best case trees seem to differ by less than the
factor 2. Nonetheless, sparse feedback polynomials should be avoided
in designing most stream ciphers, the self-shrinking generator being no
exception.

Acknowledgement We would like to thank one of the anonymous referees
for a number of very helpful comments.

References

1. S.R. Blackburn. The linear complexity of the self-shrinking generator. IEEFE
Transactions on Information Theory, 45(6):2073-2077, September 1999.

2. D. Coppersmith, H. Krawczyk, and Y. Mansour. The shrinking generator. In D.R.
Stinson, editor, Advances in Cryptology - EUROCRYPT ’93, volume 773 of LNCS,
pages 22-39, Berlin, 1993. Springer-Verlag.

3. J.D. Goli¢. Cryptanalysis of alleged A5 stream cipher. In W. Fumy, editor, Ad-
vances in Cryptology - EUROCRYPT 97, volume 1233 of LNCS, pages 239-255,
Berlin, 1997. Springer-Verlag.

4. J.D. Goli¢ and L. O’Connor. Embedding and probabilistic attacks on clock-
controlled shift registers. In A. De Santis, editor, Advances in Cryptology - EURO-
CRYPT ’9/, volume 950 of LNCS, pages 230243, Berlin, 1995. Springer-Verlag.

5. S.W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna Hills (CA),
revised edition, 1982.

6. H. Krawczyk. The shrinking generator: Some practical considerations. In R. An-
dersen, editor, Fast Software Encryption ’93, volume 809 of LNCS, pages 45-46,
Berlin, 1994. Springer-Verlag.

7. J.L. Massey. Shift register synthesis and BCH decoding. IEEE Transactions on
Information Theory, 15:122-127, 1969.

8. W. Meier and O. Staffelbach. The self-shrinking generator. In A. De Santis, editor,
Advances in Cryptology - EUROCRYPT 94, volume 950 of LNCS, pages 205-214,
Berlin, 1995. Springer-Verlag.

9. M.J. Mihaljevié. A faster cryptanalysis of the self-shrinking generator. In
J. Pieprzyk and J. Seberry, editors, Advances in Cryptology - ACISP ’96, volume
1172 of LNCS, pages 182-189, Berlin, 1996. Springer-Verlag.

10. I. Shparlinski. On some properties of the shrinking generator.
http://www.comp.mq.edu.au/"igor/Shrink.ps.

11. L. Simpson, J.D. Goli¢, and E. Dawson. A probabilistic correlation attack on the
shrinking generator. In C. Boyd and E. Dawson, editors, Advances in Cryptology
- ACISP ’98, volume 1438 of LNCS, pages 147-158, Berlin, 1998. Springer-Verlag.

